
Understanding the Challenges of OpenSCAD Users
for 3D Printing

J. Felipe Gonzalez
Carleton University

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
Lille, France

johannavila@cmail.carleton.ca

Thomas Pietrzak
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
thomas.pietrzak@univ-lille.fr

Audrey Girouard
Carleton University
Ottawa, ON, Canada
audrey.girouard@carleton.ca

Géry Casiez∗
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
gery.casiez@univ-lille.fr

ABSTRACT
Direct manipulation has been established as the main interaction
paradigm for Computer-Aided Design (CAD) for decades. It pro-
vides fast, incremental, and reversible actions that allow for an
iterative process on a visual representation of the result. Despite
its numerous advantages, some users prefer a programming-based
approach where they describe the 3D model they design with a
specific programming language, such as OpenSCAD. It allows users
to create complex structured geometries and facilitates abstraction.
Unfortunately, most current knowledge about CAD practices only
focuses on direct manipulation programs. In this study, we inter-
viewed 20 programming-based CAD users to understand their moti-
vations and challenges. Our findings reveal that this programming-
oriented population presents difficulties in the design process in
tasks such as 3D spatial understanding, validation and code debug-
ging, creation of organic shapes, and code-view navigation.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.

KEYWORDS
Programming-based CAD, OpenSCAD, 3D printing, Maker culture
ACM Reference Format:
J. Felipe Gonzalez, Thomas Pietrzak, Audrey Girouard, and Géry Casiez.
2024. Understanding the Challenges of OpenSCAD Users for 3D Printing. In
Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/3613904.3642566

1 INTRODUCTION
Computer-Aided Design (CAD) applications are used to aid design
processes across various fields, including the rapidly growing 3D
printing community. 3D printing technology allows individuals to

∗Also with Institut Universitaire de France.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
CHI Conference on Human Factors in Computing Systems (CHI ’24), May 11–16, 2024,
Honolulu, HI, USA, https://doi.org/10.1145/3613904.3642566.

design and fabricate objects easily and quickly in what is known as
the digital personal fabrication practice [6, 57]. After identifying
an idea or a need, makers create a digital model from scratch or
retrieve it from model-storing websites [83], edit it, and print it in
hours. Generally, users follow an iterative process going back and
forth between the creativity, design, and printing stages until they
achieve a satisfactory result [32].

Makers design using CAD applications that come in several fla-
vors, integrate different technologies, and support different features.
Most of the available applications, such as TinkerCAD [7], FreeCAD
[80], or Fusion360 [34] use the direct manipulation interaction
paradigm [74] where users can edit the models by making changes
directly to their visual representation through simple metaphors
such as drag-and-drop, menus, and buttons. Direct manipulation
provides immediate feedback, incremental and reversible opera-
tions [73, 74], which enable a rapid learning curve [72].

A less popular category of CAD software use a programming-
based approach that allows users to create 3D models by coding
in a text editor with a specific programming language. Users must
create scripts describing the models, and the system compiles and
renders the result in a 3D viewer. Programming brings valuable ad-
vantages to 3D design. For instance, repetitive actions can be easily
generalized, such as placing multiple elements in a specified pattern,
through the use of programmatic structures like conditionals and
loops. Moreover, programming allows the creation of very complex
structured geometries, such as fractals or trees, through program-
ming techniques like recursion. It facilitates the utilization of mathe-
matical formulas, version control, and abstraction [86]. Our primary
focus lies in CAD applications that embrace the programming-based
approach to its fullest extent. Although some direct manipulation
applications allow users to make modifications through code, as
seen in FreeCAD with Python scripts [23], this paper excludes such
cases from the category of programming-based CAD because the
code primarily executes specific actions rather than serving as a
comprehensive model description. In programming-based CAD, all
model changes are reflected in the code, which always represents
the complete model description. When modifications occur, the
system re-executes all scripts to generate a new 3D model. Open-
SCAD [64], CadQuery [16], IceSL [49], and JSCad [63] are examples
of programming-based CAD software.

https://orcid.org/0000-0002-0716-1689
https://orcid.org/0000-0002-2013-7253
https://orcid.org/0000-0003-3223-105X
https://orcid.org/0000-0003-1905-815X
https://doi.org/10.1145/3613904.3642566
https://doi.org/10.1145/3613904.3642566

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

Programming-based CAD applications are important players in
CAD design and, specifically in the personal fabrication field. They
present a solution to design complex structured geometries and
offer a different paradigm from direct manipulation, allowing an
alternative way of 3D designing [19, 38]. However, the potential
of programming-based CAD may be underestimated and its chal-
lenges may not have been adequately studied. Previous research on
user behavior in 3D printing design has focused on investigating
improvement opportunities for CAD almost exclusively in direct
manipulation applications [43, 45, 53, 84], with findings specific to
this context. For instance, Mahapatra et al. [53] studied the barri-
ers to taking measurements of objects, transferring them to CAD
applications, and manipulating this information digitally. Some
of the difficulties classified as “ Digital” are specific to direct ma-
nipulation applications such as “3D camera causes manipulation
errors”. Furthermore, the literature related to programming-based
CAD applications is limited. Previous research has examined the
limitations of understanding and navigating code in programming-
based CAD [27] and its potential for students to learn programming
through 3D design [38]. However, these studies address specific
task difficulties within a limited scope of the 3D printing design
experience. A better understanding of the user experience with
these applications, their advantages, and the problems users face
when 3D printing is still missing. We have set out to investigate
the following research questions: What are the motivations and
challenges of using programming-based CAD? What are the cur-
rent limitations of these applications? In the context of 3D printing,
how do the challenges previously identified in direct manipulation
CAD applications relate to the ones present in programming-based
CAD applications? There is an interesting opportunity for HCI to
investigate the current challenges programming-based CAD users
face to facilitate the design process and possibly lower the entry
barrier for newcomers.

This paper investigates how users of programming-based CAD
software experience the design and fabrication process. We con-
ducted semi-structured interviewswith 20 users of themost popular
programming-based CAD software in 3D printing for personal fab-
rication, OpenSCAD [52, 59]. We asked participants about their
design experiences with programming-based CAD, direct manipu-
lation applications, and comparisons between them in the design
and printing process. Additionally, we draw on previous work to
explore their motivations and contrast barriers found in 3D print-
ing with direct manipulation applications. Specifically, we included
questions related to problems measuring physical objects to cre-
ate digital designs [53] and limitations working with pre-existing
models from websites [2]. We also included a short hands-on exer-
cise to observe design workflows and difficulties [27, 86]. Based on
the findings of the interviews, we provide a comprehensive analy-
sis of the preferences of programming-based CAD users, current
challenges in the design and printing process, and desired features
expressed by the participants to improve these applications.

Our contribution is a qualitative analysis that aims to provide
a comprehensive understanding of the programming-based CAD
population. Specifically, we examine their motivations, design chal-
lenges, and challenges in the application field of 3D printing. Our
findings suggest that programming-based CAD users, often with a

long programming experience and a programming-oriented mind-
set, face significant difficulties measuring and designing organic
and curve shapes, mentally connecting the code with the view, per-
forming spatial transformation due to the required mathematical
skills, and addressing uncertainty when 3D printing.

2 BACKGROUND
We describe some technological aspects of CAD software to frame
our findings. We begin by defining what a programming-based
application is. Then, we differentiate between the workflows of
CAD applications, specifically parametric and direct modeling. Ad-
ditionally, we explain the two primary data representations that
CAD applications use. Finally, we introduce the CAD application
we used for this study, OpenSCAD.

2.1 Programming-based CAD
Programming-based CAD refers to the applications that allow users
to describe models entirely through coded instructions while the
system renders the result in a view. In particular, the code represents
the full description of the model, and any edit of the model is
described in the code. Text-based applications such as JSCad [63],
BRL-CAD [17], and OpenSCAD [64] fall into this definition. CAD
applications using visual programming such as BlockSCAD [35]
or Grasshopper [20] can also be considered as programming-based
CAD.

Some direct manipulation applications allow users to modify
the model with code. McGuffin and Fuhrman [55] present a taxon-
omy of applications using different interaction paradigms, which
can be applied to CAD. Content-Oriented Programming paradigm
enables the output to be affected by instructions and direct manip-
ulation. Blender [22] is an example of such an application, with
which users create and edit meshes in the view and run scripts
for specific actions with a code editor. Another category that uses
both direct manipulation and coded instructions is Programming
By Example, where direct manipulation interactions generate in-
structions that the user can execute later to edit the model. For
instance, FreeCAD [23] provides a console where actions in the
view generate corresponding Python code statements that the user
can run later. These approaches present a fundamental workflow
difference compared to programming-based applications. The code
is used to perform specific actions, but it does not comprehensively
describe the 3D model visually represented. In programming-based,
a modification requires the user to go through the code, edit it
coherently, and re-execute all the scripts to re-generate the model;
in the other paradigms, the code executes specific actions to modify
the current state of the model.

McGuffin and Fuhrman also present the Bidirectional Program-
ming applications, where users can modify the output with both
direct manipulation and instructions. In these applications, every
change in the output through direct manipulation results in an
update in the code to keep coherence, such as presented in the
scalable vector graphics (SVG) environments Sketch-N-Sketch [28]
or Twoville [37]. Bidirectional programming CAD applications
[27, 39, 40] follow the definition of the programming-based CAD
paradigm by always keeping the code as a full description of the
model, but they also extend the interaction capability by allowing

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

direct manipulation interactions in the view. Antimony [40] is an
example of a programming-based CAD that allows users to use
visual programming to create and edit the model in the view while
the system updates the instructions coherently. Despite the poten-
tial benefits of these applications, they seldom seem to be used,
given the difficulty of finding models online.

2.2 Parametric and direct modeling
CAD applications can be divided into two groups based on how the
system stores and executes changes in the model [87]: parametric
modeling and direct modeling. Parametric modeling, also called
feature-based or history-based modeling [4, 42], allows the user to
describe the model in a re-executable set of steps defined by param-
eters. Parameters are adjustable to create new versions of the model
by re-executing the steps. Programming-based CAD is naturally
parametric due to the way coding works, having arguments as input
that determine the output. On the other hand, direct manipulation
applications that apply a parametric approach commonly allow
users to define constraints and perform operations to the model,
also called features, stored in a history tree. Modifiable parameters
often control these features. Thus, besides verifying the history of
the design process, the user can perform edits on the history tree
and re-execute it. Consequently, users can obtain solid model vari-
ants by editing parameters embedded in the model [87]. FreeCAD
[80] is an example of parametric modeling. In contrast, direct mod-
eling allows users to edit the model without worrying about the
history of these edits. The system only captures the current state
of the model. Consequently, users gain flexibility, such as not wor-
rying about features and the impact changes may have on their
inter-dependencies [14], by renouncing to revisit their steps [14].
Tinkercad [3] is an example of a direct modeling application.

2.3 Data representation
Another distinguishing aspect of CAD applications is how the
geometric data is represented and stored. We distinguish between
programs using constructive solid geometry (CSG) and boundary
representation (B-rep). In CSG, a solid is represented as a set of
primitive solid objects (e.g. spheres and cubes), transformations (e.g.
scale or mirror), and boolean operations (e.g. union or intersection)
as depicted in Figure 1b. Both the surface and the interior of an
object are implicitly defined. In other words, there is no description
of specific geometric properties, such as points, edges, or positions,
but abstract descriptions of primitives and operations. CSG objects
are always watertight and manifold [79] if the primitives are [30].
Therefore, CSG provides closed and well-formed geometries that
are printable, making CSG attractive for 3D printing [25]. On the
other hand, a boundary representation (B-rep) describes only the
oriented surface of a solid as a data structure composed of vertices,
edges, and faces. B-rep can be efficiently rendered on a graphic
display system, allowing easy differentiation between the vertices,
edges, and faces (Figure 1a). This offers more flexibility than CSG

and allows for valuable operations in 3D printing, such as cham-
fering, blending, or drafting [25, 30]. OpenSCAD [64] uses a CSG
representation while FreeCAD [80] uses a B-rep.

2.4 OpenSCAD
OpenSCAD is an open-source parametric CSG programming-based
CAD application. Users can describe 3D models in its functional
declarative programming language using the text editor, and the
system compiles and renders the scripts in a viewer. Although Open-
SCAD has applications in various domains [77], it provides mainly
3D printing-oriented features. For instance, OpenSCAD preferences
menu offers features such as connecting with OctoPrint [33], a web
interface for controlling consumer 3D printers or export models
into the standard STL format for 3D printing [62]. OpenSCAD aims
to give full control over the design by being purely programming-
based. It is the most popular of the programming-based CAD ap-
plications, which are mainly parametric CSG applications such as
IceSL [49], JSCad [63], BRL-CAD [17], ImplicitCAD [51], or Rap-
CAD [8].

OpenSCAD is not an interactive modeler and does not focus on
the artistic aspects of 3D modeling but on the CAD aspects [64]. In
addition to CSG modeling techniques, it allows the extrusion of 2D
outlines. It also provides a preview mode that generates approxi-
mations for rapid visualization and a render mode that generates
exact geometries using longer rendering times. In preview mode,
OpenSCAD allows the user to right-click on the models in the view
to display a menu of the CSG elements that create the clicked part.
The user can click on a menu item while the system places the text
cursor in the line of code that creates the CSG element. Moreover,
OpenSCAD language includes modifiers for debugging. Modifiers
are specific characters that can be placed at the beginning of code
statements to ignore, highlight, or isolate elements in the view1.
Finally, OpenSCAD handles command-line arguments and is not
limited to the graphic user interface.

3 RELATEDWORK
Creating 3D models is an essential part of the 3D printing pro-
cess. Makers can create a model from scratch using specialized
CAD software. Furthermore, they can get a pre-existing model
from model-storing websites to print it as is or edit it in a CAD
application to get a customized version. We describe previous work
investigating end-user behaviors and challenges in 3D design and
3D printing in such scenarios. We start by looking at lessons learned
from work on direct manipulation programs, and we continue with
related work on programming-based CAD. Finally, we describe
some existing problems with model-storing websites.

3.1 Modeling with direct manipulation
programs

The direct manipulation paradigm facilitates user interaction by
reducing the cognitive resources required to understand and use
user interfaces [1, 75]. The actions must be fast, incremental, and
reversible, while the objects of interest must be visible and directly
manipulable [73, 74]. Hence, this paradigm guarantees several us-
ability benefits, such as recovering from errors and learning how
to use the interface [72]. However, direct manipulation presents
well-known challenges, such as difficulties in performing repeti-
tive actions, manipulating small objects (especially in high-density

1https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Modifier_Characters.
Accessed: 11/12/2023

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

(a) FreeCAD is a parametric direct manipulation software using
B-rep. (1) Users can check the history tree to revisit their steps. (2)
They can also interact in the view, individualizing vertices, edges, or
faces. (3) FreeCad provides a Python console in which users can

execute specific actions through code.

(b) OpenSCAD is parametric programming-based CAD software
using CSG. (1) Users can describe the models through primitives

(e.g. sphere), transformations (e.g. translate), and boolean
operations (e.g. union) in a text editor. (2) The system compiles and

renders the result in a 3D viewer.

Figure 1: Example of two parametric CAD applications.

spaces of objects), or manipulating intangible properties (abstract
properties without visual form) [24, 47].

In 3D printing CAD, Hudson et al. [32] studied novices inter-
acting with TinkerCAD and reported that manipulating elements
in a 3D space through a 2D screen can confuse and lead to errors
that are known problems in other digital applications [21]. Similar
difficulties related to spatial thinking skills have also been reported
in children using TinkerCAD [9]. Specifically, problems related to
understanding the 3D perspective, understanding rotation in a 3D
space, using the correct primitive shapes, and grouping primitive
shapes. Programming-based CAD applications can present similar
problems by having a 3D viewer rendering the output.

An everyday use of 3D printing is to repair [32] or to augment
objects [6]. In such cases, measurements of physical objects, their
transfer, and their meaningful use in the design are necessary. Ma-
hapatra et al. [53] study how self-identified novice users capture
physical measurements, transfer them to digital design, and ver-
ify their accuracy. The study carried out on TinkerCAD reported
several obstacles when novices create a digital replica of an object,
classified into three groups according to the moment they occur: 1)
Physical when capturing the data, 2) Digital when using the data
in the digital design, and 3) Transition when transferring (from
physical to digital) or evaluating (from digital to physical) the data.
Although physical obstacles are independent of the modeling CAD,
digital and transition may differ when using a programming-based
application. Probably some challenges may persist (e.g. "3D camera
causes confusion"), others may occur differently (e.g. "Relative place-
ment problems"), and others may not make sense in programming-
based CAD (e.g. "Miscalculating by hand"). We take inspiration from
this work to explore what problems programming-based CAD users
face when measuring, transferring, and using data in the design
process.

3.2 Modeling with programming-based CAD
Significant efforts have been made to understand the difficul-
ties in learning programming languages [44, 67]. Expectedly,
programming-based CAD users may present similar challenges,
such as difficulties in structuring and breaking down the problem
into smaller problems, difficulty finding the features the programs
offer, or documentation problems.

Yeh and Kim [86] report problemswith programming-based CAD
and direct manipulation software offering scripting features for 3D
design. These problems include difficulties reading code, re-using
code, aligning objects, selecting parts, refactoring code, and 3D
printing. Unfortunately, these undetailed findings were obtained
from undocumented feedback from novice students with Open-
SCAD and online forums such as StackOverflow. More recently,
Gonzalez et al. [27] investigated challenges in OpenSCAD related to
navigating and editing models. The findings include difficulties in
linking the code to the view and performing spatial transformations.
We aim to cover a broader scope of the 3D design, 3D printing, and
re-using pre-existing models experience with OpenSCAD.

3.3 Sharing and re-using models.
Sharing is a keystone in the 3D printing community [46]. Multiple
model-storing websites allow authors to upload models to share
with other users, such as Thingiverse [83], MyMiniFactory [58]
or Printables [5]. Some of them allow authors to upload coded
parametric models that expose widgets so other users can modify
parameter values for the system to create a customized version of
the models [71, 82]. Thingiverse, with its Customizer application
[82] is an example of these solutions that store OpenSCAD models.
Oehlberg et al. [61] reported how, after a year of the release of
Customizer, about 40% of the Thingiverse models were created
from parametric models. These findings depict how some users
re-use models to remix them by changing parameters. However,
it is unknown if the authors of these parametric models adopt the

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

re-using practice in their models. We aim to understand the role of
model-storing websites in programming-based CAD design.

In summary, some previous research has explored end-user expe-
riences in direct manipulation programs, with findings not always
applicable to programming-based CAD. Furthermore, there has
been limited exploration of programming-based CAD problems
and the sharing and re-using practice. Our work addresses these
voids and contributes to a better understanding of this population
in depth.

4 METHOD
We conducted twenty semi-structured interviews to understand
the motivations and challenges of OpenSCAD users empirically.
The interview was divided into three parts. First, we asked par-
ticipants for demographic information. Also, we asked them to
self-rate their skill level on a scale from one to five, one meaning
novice and five expert, on direct manipulation CAD applications,
programming-based CAD applications, and general programming
languages outside CAD. Similarly, we asked participants to self-rate
their skill level in OpenSCAD on the same scale. The responses are
reported in Table 1.

In the second part, we asked participants open questions about
their experience in 3D printing and 3D modeling. Specifically, we
were interested in understanding the motivations of makers in
using OpenSCAD for 3D design, the challenges and limitations
they face using OpenSCAD for 3D printing, their perception of
direct manipulation programs compared to OpenSCAD, and ideas
to improve OpenSCAD that might apply to other programming-
based CAD applications. Furthermore, we draw on previous work
on understanding the complexity and challenges of 3D modeling
in direct manipulation programs to contrast these findings with
the experience of OpenSCAD users. Concretely, we have included
questions related to difficulties measuring physical objects and
transferring data to digital designs [53], and sharing and re-using
models in model-storing websites [2, 86].

Finally, we wanted to understand the limitations of more specific
actions when designing in OpenSCAD. We decided it would be
easier to study participants’ behavior in a real scenario while we
observe them instead of only asking them to describe how they use
the software, which could lead to easily missing specific actions or
strategies they use. Thus, we asked the participants to perform a
short hands-on exercise in the third part to observe their behavior
while performing tasks. Based on the findings of previous work, we
report problems in programming-based CAD related to selecting
specific parts to apply operations, including challenges in reading,
navigating, refactoring, and understanding code [27, 86]. If possible,
we asked the participants to bring one of their own OpenSCAD
models to the interview. P2 did not provide a model, so we used
the example candleStand.scad provided by OpenSCAD.

The participants explained the motivation behind the model and
went through their code, discussing difficulties and how they mod-
eled their object. We asked them to perform search tasks replicating
the need to select a part to modify it or apply an operation. We
pointed at specific parts in the 3D view and asked the participant
to locate the lines of code that created them. We asked participants
to think aloud while we carefully observed the process, recurrent

behaviors, and strategies. We paid special attention to the software
features they used, the typical patterns they followed to perform
the tasks, and the errors they made. Last, we discussed ideas they
could have to improve their experiences in OpenSCAD.

The interviews lasted approximately 60 minutes on average. The
questionnaire used is included in the Appendix. We took notes
of their answers and the observed behaviors during the hands-on
exercise. The experiment protocol was examined and approved by
the ethics board in our laboratory.

4.1 Recruitment and Participants
We relied on the common use of 3D modeling in research and the
active sharing nature of programming and maker communities on
social media. We recruited participants from research laboratories
and OpenSCAD channels on Reddit (r/openscad) and Facebook
(OpenSCADAcademy) to conduct the semi-structured interview using
video conferencing or in person. The only requirement was having
enough experience with OpenSCAD to read and write code, but
we also expressed that having 3D printing experience would be an
asset.

We report participant demographics and experience in Table 1.
All the participants self-identified as male and varied in age: one
was between 20 and 29, four were between 30 and 39, seven were
between 40 and 49, four were between 50 and 59, and four were
between 60 and 69 (average: 48.0, standard deviation: 11.7). All
participants, except P8, had three or more years of 3D printing
experience (average: 7.9y, standard deviation: 3.8). Except for P13
and P18, all participants self-rated with four or more in at least
two programming languages. Moreover, all participants, except
P20 mentioned having experience with direct manipulation CAD
programs. Only five participants self-rated their direct manipulation
CAD application skills with four or more. Regarding experience
with other programming-based CAD applications or applications
that allow scripting, only six participants expressed having any,
and only P2 and P12 self-rated their skill level above 3 in one of
those applications. Finally, participants self-rated their skill level
with OpenSCAD as follows: One participant with 1, one participant
with 2, six participants with 3, eight participants with 4, and four
participants with 5.

4.2 Data Analysis
We followed a Reflexive Thematic Analysis (RTA) [11, 15] approach
in an iterative coding process. Our study aims to understand the
user experience using OpenSCAD, and part of the data collected
included behavioral observations from the hands-on experience.
Thus, we opted for a data analysis approach suitable for these
studies [12, 15] that allows flexible participation of the researcher’s
interpretations rather than other qualitative analysis approaches
such as code reliability or ground theory [10, 78].

We uploaded the interview data into the MaxQDA data analy-
sis software [26]. One of the researchers performed an inductive
analysis to develop a set of codes by coding the first ten interviews.
Then, the coder started grouping codes by recognizing recurring
patterns and identifying codes describing a central concept to create
subthemes and themes [13]. To achieve a richer interpretation of
the coding process [12], a second researcher performed a deductive

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

Table 1: Demographics and self-rated skill level in CAD programs and programming languages.
Participants self-rated their skill level on the scale: 1 (Novice), 2 (Advanced Beginner), 3 (Competent), 4 (Proficient), 5 (Expert).

The level reported in the category Others is the highest rank expressed by the participant among the options.
*Direct manipulation CAD others: LibreCAD, Sketch Up, AutoCAD, Curve3D, OnShape, Catia, SolidWorks.

**Programming Language Others: Prolog, MaxMSP, PureData, Ruby, GoLink, MatLab, Cobol, Pearl, Pascal, Groovy, TypeScript.

Direct Manipulation CAD Programming based CAD Programming languages

Pa
rt
ic
ip
an
t

A
ge

Ra
ng

e

3D
pr
in
tin

g
ex
pe
rie

nc
e
(y
)

O
pe
nS

CA
D

Bl
en
de
r

Fr
ee
CA

D

Fu
si
on

36
0

Ti
nk

er
CA

D

Rh
in
oc
er
os

O
th
er
s*

Ic
eS
L

Py
th
on

A
PI

Js
CA

D

Ca
dQ

ue
ry

BR
LC

A
D

Bl
oc
ks
CA

D

C C+
+

C# Ja
va

Ja
va
Sc
rip

t

Py
th
on

PH
P

O
th
er
s*
*

P1 50 - 59 10 3 1 1 1 4 4 4 4 4 4
P2 40 - 49 6 1 3 5 2 5 3 4 3
P3 20 - 29 7 4 2 4 1 4 4 5
P4 30 - 39 5 3 3 3 4 4 4 4 4 4
P5 40 - 49 6 4 4 4 4 4 3
P6 40 - 49 15 4 2 4 2 4 3
P7 30 - 39 8 4 3 3 3 4 4 4
P8 40 - 49 1.5 3 2 4 4 5 5
P9 30 - 39 14 3 4 3 4 3 4 5 3 3
P10 60 - 69 8 5 2 1 5 5 5
P11 40 - 49 7 4 1 1 5 5 5
P12 50 - 59 13 4 1 1 1 4 4 4 4
P13 60 - 69 5 3 1 2 1 1 1
P14 60 - 69 4 5 1 3 5 2 4 4 3
P15 40 - 49 8 3 1 1 1 4 4 4
P16 50 - 59 6 4 1 4 4 4 4
P17 30 - 39 15 5 4 4 4 2 2 4 4
P18 60 - 69 8 2 1 1 1
P19 40 - 49 3 4 1 1 5 5 3
P20 50 - 59 9 5 1 4 4 5

thematic analysis on a randomly selected interview. The second
coder used the codes created by the first coder in this interview
and could create new codes when necessary. Then, both coders
discussed the disagreements and refined the codes by removing,
merging, changing, or adding new codes. After re-organizing codes,
subthemes, and themes, the first ten interviews were re-coded with
the resulting set of codes. In the second iteration, the first coder
continued the inductive analysis with the next five interviews, fol-
lowed by the deductive coding from the second coder, discussions
on the codes, refinement of the codebook, and re-coding of the
interviews. A third iteration was performed to complete the coding
of the total of interviews.

Although RTA does not seek reliability coding [11], we were
interested in tracking the level of agreement between coders. We
calculated Cohen’s kappa index in every iteration to verify inter-
coder reliability [54]. At the end of the coding of all interviews,
we achieved a substantial [48] agreement: iteration 1 𝜅 = 0.543,
iteration 2 𝜅 = 0.592, iteration 3 𝜅 = 0.617.

Most of the codes were created in the first fourteen interviews,
achieving a potential code saturation. However, it was not until the
seventeenth interview that codes, themes, and subthemes found in
the codebook did not have substantial changes, and their meaning
was well established, achieving meaning saturation [29].

5 THEMES
We created 266 individual codes to code a total of 783 segments of
our notes. We grouped codes into subthemes and then into three
main themes. Programming-based CAD user profile theme groups
22 codes (59 segments coded) and 9 subthemes as depicted in Table

2. Table 3 depicts the theme Design that covers 193 codes (632
segments coded) and 80 subthemes. Finally, Printing theme includes
51 codes (92 segments coded) and 20 subthemes (Table 4).

5.1 Programming-based CAD users profile
We start by discussing the design experience of the participants in
OpenSCAD. Later, we discuss why participants use a programming-
based CAD and their opinions on direct manipulation programs.

5.1.1 Experience with OpenSCAD. Participants (n = 10) mentioned
the advantages of using OpenSCAD. The first is related to the para-
metric capability of programming-based CAD. P17, for instance,
discussed his work in a laboratory making prototypes “ it was use-
ful to have this programmatic base to create arbitrary variations
of similar things”. Participants found it helpful to define complex
geometries through mathematical definitions instead of storing
high volumes of data when having geometric information, as hap-
pens in direct modeling. P2 worked with robotics and talked about
his needs “ I want compact shape descriptions that generate highly
complex geometries (. . .) we don’t want to store all the geometry
with triangles”. Programming-based CAD also helps to generalize
models better. For instance, P2 mentioned that resizing a robotic
articulated arm involves more than just geometric scaling. The
operation may require adding another articulated section, and de-
scribing this behavior in direct manipulation is difficult. Moreover,
programming features such as abstraction allow participants to
re-use work. Further, participants found it convenient that Open-
SCAD is open-source, runs on all major operating systems, and is
the most popular programming-based application with community

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 2: Structure of theme Programming-based CAD user profile. Color intensity is proportional to the number of interviews
coded with codes of the theme and subthemes.

Theme Subtheme

Advantages

(n = 10)Programming-based

CAD users

(n = 18)

Experience with

OpenSCAD (n = 13)

OpenSCAD is popular and open source (n = 4)

Programming features make design easier (n = 3)

Easy to describe complex shapes (n = 2)

Parameters allow a flexible definition of objects (n = 3)

Disadvantages (n = 7)

Programmer mindset (n = 13)

Direct manipulation mindset does not work for me (n = 6)

support. P12 mentioned “ It’s also the most popular program. If you
find a problem, someone else already had it and you can just copy the
code or see a different approach”.

However, some participants (n = 7) identified liabilities of using
OpenSCAD. Despite the support community, they feel that the
development of the application is slow. P4 mentioned trying to
contribute to the project on GitHub, but multiple pull requests have
been on hold for a long time without being integrated into the
application. Moreover, they found that the available features are
too basic and the rendering time of complex models inconveniently
long.

5.1.2 Programmer mindset. All the participants except P18 (Table
1) had a programming background and found the 3D modeling
programming-based paradigm convenient. P19 expressed “ I discov-
ered OpenSCAD. I was like, "Oh, hey, this is just models and software"
(. . .) It was beneficial to be able to develop parametric models in code,
which was part of my skill set.”. Programmatic interfaces are a good
entry door to 3D printing for this population.

Participants (n = 13) also mentioned that OpenSCAD also fits
their mathematically oriented mindset. Interestingly, P12 and P15
expressed that despite having a programmer mindset, one of their
problems was their lack of math skills. P12 said “ I’d like to say I’m
an expert in OpenSCAD (. . .) The one thing that bugs me down is the
math. I always get stuck on that”.

5.1.3 Experience with direct manipulation programs. Six partici-
pants commented that the direct manipulation paradigm did not
work with their mindset. P11 said “ I’m not a visual guy, not really
an artist. I can imagine what I want to do and write it down without
a preview”.

Interestingly, some participants (n = 4) thought that they would
inevitably need to learn direct manipulation applications due to
the perceived limitations of programming-based ones. However,
some of them have succeeded without learning a new application.
P5 commented “ I’ve always said to myself, I’ll learn AutoCAD when
I need it, and so far I haven’t needed it.”

5.2 Design
We discussed several aspects of the design process and how it relates
to the other stages in the fabrication process.

5.2.1 Working with existing objects. Often, makers fabricate objects
that will interact with other objects, such as in the case of repairing
or augmenting an object. Participants shared their experiences in
such cases.

Linear measuring. The preferred measurement tool for linear
measurements is the digital caliper. However, two participants
stated that the task of measuring increases uncertainty and leads
to more iterations. P8 mentioned “ If I was better at taking mea-
surements, I would go through fewer iterations, and my first print
would probably be closer to what I want”. Moreover, calipers have
size limitations, according to two participants. P14 commented “
calipers don’t go big enough to measure a lot of this stuff”.

Measuring organic shapes and curves. In addition, measuring
organic or curved shapes is complex (n = 11). For instance, P15
commented on their work on repairing parts: “ it’s rectangular and
then there’s a curve. I had to print it like 15 times to get that right.”.
To deal with it, seven participants reported using creative solutions.
For example, P12, P14, and P20 have used cameras or scanners to get
the outline of a shape and use it later in the design by transforming
it into an SVG or by measuring the outline and approximating the
curves. P14 commented “ I photocopied the object, I put it down
on a photocopier, so I could get a picture of the rim of the profile,
from which I could make measurements of it. Then I had to run an
optimization program in a spreadsheet to figure out how everything
fits together, how all the curves match, and what angles join each
other. . . ”. P14 also reported using photogrammetry with no good
results.“ I tried photogrammetry to make a 3D model of this; it just
doesn’t work if you have shiny or transparent surfaces. I got a nice
model but also sort of a cloud of nondescript points because of all the
reflections on the surface”. Other participants have tried to measure
some points to interpolate by guessing in a trial-and-error strategy.
P12 mentioned using a contour gauge to approximate curves and
P14 said that at some point, he would hold the physical object in
front of the screen to see if the object to print would match.

Some participants (n = 4) prefer to avoid organic shapes and
curves. P20 commented that “ I try to avoid them (curves and organic
shapes) in my designs. If I’m just talking about rounding corners, I
pick up a set of radius measurement tools so I can get the correct size
of rounded edges. Beyond that, it’s trial and error.”

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

Table 3: Structure of theme Design. Color intensity is proportional to the number of interviews coded with codes of the theme
and subthemes.

Theme

I use non orthodox methods (n = 7)

I prefer not to deal with it (n = 4)

Challenges (n = 6)

Advantages (n = 3)

Disadvantages (n = 3)

Relate objects with something I know (n = 4)

Read and analyze the code (n = 13)

I remember what I coded (n = 12)

Limitations with parametric models (n = 4)

Search engines and availability (n = 6)

Licenses restrictions (n = 2)

It is difficult to edit meshes (n = 4)

STL files are usually broken non manifold (n = 11)

Code models are more flexible to re-use (n = 3)

Libraries (n = 2)

Available code quality, understanding other people's code (n = 5)

I adapt pre-existing code to my models (n = 4)

Subtheme

Reusing models or Design

from scratch (n = 20)

My pipeline (n = 10)

I enjoy doing it, wanna do it better (n = 5)

My needs are too specific for pre-existing models (n = 6)

It is easier, faster, or better quality if I do it (n = 4)

Pre-existing models do not fulfill my needs (n = 16)

Model storing websites and its

offer of models (n = 7)

Pre-existing models are time savers (n = 7)

Pre-existing models are for inspiration (n = 8)

Re-using meshes (n = 14)

Re-using code (n = 10)

Sharing models (n = 8)

Other challenges (n = 3)

Improvement opportunities

(n = 17)

Spatial information extraction (n = 7)

OpenSCAD is convenient (n = 3)

Verifying (n = 8)

Parametric modeling

(n = 11)

Interactive editing (n = 8)

Interactive selection and navigation (n = 11)

Using modifiers (n = 15)

Changing colors (n = 3)

Removing objects temporarily (n = 10)

Trial and error (n = 9)

Challenges (n = 7)

Design from scratch

(n = 12)

Reusing models

(n = 20)

Design

(n = 20)

Working with existing

objects (n = 13)

Linear measurements (n = 11)

Curves, round, and organic

shapes (n = 11)

Making things fit (n = 5)

Manipulating the model

(n = 16)

In direct manipulation programs (n = 2)

In programming-based CAD (n = 15)

Programming-based specifics

(n = 20)

Working with several files/parts (n = 9)

Code practices (n = 14)

Challenges (n = 7)

Code editor (n = 6)

Reading the code to understand

(n = 18)

Creating organic and curved

shapes (n = 10)

In programming-baed CAD (n = 9)

In direct manipulation programs (n = 2)

Screen problems (n = 2)

CSG (n = 7)
Not possible to individualize points or faces (n = 3)

Subtracted parts (n = 6)

Physical Measuring

(n = 12)

Spatial actions

(n = 15)

In programming based

CAD (n = 9)

Dealing with code

(n = 18)

Code-view navigation,

selecting parts and

understanding

(n = 20)

Versioning and collaborative work (n = 3)

Repetitive actions (n = 4)

Text Search feature (n = 5)

Errors (n = 4)

Other challenges (n = 8)

Guessing from the view (n = 1)

OpenSCAD search (n = 4)

In programming-based CAD (n = 9)

In direct manipulation programs

(n = 6)

Achieving digital precision

(n = 9)

In direct manipulation (n = 2)

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Using digital replicas. It is easy to miss context elements when
fabricating objects interacting with other things (n = 5). Makers
cannot imagine every aspect of the physical objects in the 3D view
to see if the design will satisfy their needs. P9 explained “ this
piece is a cover for an emergency button that you need to screw in
manually. I did not think about it in my first iteration, so I could not
access the screw hole and had to repeat it, adding a small hole”. Some
participants create a digital representation of the physical object
to have a reference to work with, making them more confident
about the design decisions. For instance, P11 used an STL model in
a project for his phone: “ I’ve used a model of my phone for that. I
just use an STL of the phone and design around it”.

5.2.2 Spatial transformations. The keystone modeling action is
manipulating objects’ position, orientation, and size. Participants
discussed the difficulties they usually face when performing this
task in OpenSCAD and compared it with direct manipulation ap-
plications.

Some participants (n = 2) acknowledge how easy this task is in
direct manipulation applications. P19 commented: “ With Fusion360
or TinkerCAD (it is handy) to make a cylinder of the right dimension
in the right place, basically drag and drop and get it where it belongs”.
On the contrary, the same task in programming-based CAD is
reported to be very difficult (n = 15). Trying to place an element
in the right place can be challenging, as commented by P7 “ Most
times, my difficulty is not drawing but where it should be drawing.
Like I aim to draw a sphere here and OpenSCAD put it over there,
and I am like "why?".

It seems to be challenging to relate the transformation param-
eters of a code statement with the spatial coordinates in the view
without visual cues. For instance, if a translation is applied with 10
units in the second parameter on a sphere, it is not easy to predict
the direction the sphere will move in the view. The camera view can
be in a position and orientation that maymake it hard to understand
where the axes are located and there is not enough visual help for
the user. OpenSCAD view has a widget representing the canonical
x, y, and z axes directions. However, users often need to locate
coordinate systems different from canonical ones. The position and
orientation of objects are typically the result of multiple nested
spatial transformations. Each transformation has a scope where
the relative coordinates system does not match with the canonical
one, so the widgets are useless. P15 said “ if you are creating some
volume (. . .) it is difficult to predict, with all the operation, where they
land and what precise coordinates would be”.

Participants also found dealing with translations and rotations of
the same object challenging. These spatial transformations are not
commutative. In other words, applying a translate after a rotate
would not give the same result if the commands are executed in
the opposite order. P19 commented “ you need to think about how
you want to translate and rotate it before you can even get it to where
you want. (Otherwise) You might find that you get your translation
operations out of order, and all of a sudden, you’re in the wrong place”.
To deal with this, participants use a trial-and-error technique. P6
mentioned “ If you would ask me right now, to rotate this in a certain
direction, I would not, without testing, be able to tell you what combi-
nation of the three parameters I need to get it in the direction I want”.

P9 commented on having a specific order for transformations: “ I ro-
tate first and translate later. It is easier because when I translate before
rotation, sometimes the rotation center is not the same as the object’s
center.” The participants proposed another strategy implementing
position and orientation checkpoints. They correctly generated the
transformation required for placing objects where they belong. The
elements were then designed in the canonical coordinate system,
and after completion, the participants applied the previously cal-
culated transformation. P17 commented “ I remember doing like a
checkpoint where I start. I make sure that everything starts from this
origin point. Then, when you add in multiple modules, make sure
that they’re centered around so you don’t have to keep track of all
the different systems.”. Similarly, P16 commented that he created
modules solely to place elements in a location and orientation of in-
terest. Some participants mentioned avoiding having several layers
of transformations because it becomes unmanageable.

In addition, it was deemed challenging to calculate the appropri-
ate parameter values for the spatial transformations. As objects’ po-
sition and orientation are built upon multiple transformations and
involve the sizes of other objects, the coordinates system changes
constantly, and participants must mathematically derive parame-
ters’ values of spatial transformations. Depending on the previous
spatial transformations, the relative coordinate system varies. P14
commented “ . . . I have to painfully mathematically calculate where
that plane is in space, its slope, and where its normal vector is, and
then get the surface on there. . . ”.

5.2.3 Parametric modeling. The creation and use of parametric
models were reported as valuable for the participants (n = 11).
For instance, P14 stated that direct modeling is not enough for
serious developments “ TinkerCAD is easy and fun, but not useful
for parametric modeling or anything serious.”. Further, they value
the possibility of revisiting their steps. P7 said “ because everything
is written down . . . if I pick up something one year later, I’ll remember
exactly what I did.”. Moreover, they made clear differences between
creating a parametric model in direct manipulation software and
OpenSCAD.

Six participants shared their thoughts about creating parametric
models through constraints in direct manipulation applications
such as FreeCAD and Fusion360. The ability to select objects of
interest directly from the view is perceived as practical, as men-
tioned by P14 “ you can grab a vertex and snap it to some other
location and not have to worry about numbers and measurements
so much, but you can make things fit just by moving things around
and snapping things to grid points or to other vertices, I find that’s
very nice.”. However, the constraints management in such programs
was perceived as difficult. Participants found tracking constraints
challenging because they are represented as a list in a panel differ-
ent from the view. In consequence, it is easy to get into a model
with several constraints that are hard to edit or that end up being
overconstrained. P9 commented “ I try to avoid using constraints
normally because when I’ve tried, I’ve ended up stuck, I have too many
constraints and keep receiving the "Overconstrained" error message,
and it is not easy to fix it for me. I do not know how to know which
constraint is the problem”.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

Some participants (n = 9) commented on the way of creating
parametric models by defining object properties through param-
eters and variables in OpenSCAD. All agreed on the importance
of generalizing model behaviors through the use of variables and
avoiding the definition of object properties with hard-coded num-
bers. P6 said “ . . . everything is based on making the outer frame as a
combination of parameters, so the parameters can change and then the
model still works”. However, participants mentioned that defining
everything in terms of variables can be exhausting, so sometimes,
they use variables only when they anticipate that a certain prop-
erty will need to change. Moreover, working out the mathematical
expressions for creating parametric models is perceived as very
challenging. P6 expressed “ I sometimes have a harder time doing
the math (to define object’s properties), using all the combinations of
variables where they should be”.

5.2.4 Achieving digital precision. One primary need of some partic-
ipants (n = 9) when printing is to achieve precision. They perceive
that OpenSCAD allows them to achieve accuracy in easier ways by
explicitly expressing the sizes and dimensions of every placed part.
P1 commented “ from Blender I could not make things precise (. . .) I
use CAD programs for electronic devices, from there I get measure-
ments. In OpenSCAD, it is very easy to be precise with this. I only need
to make a box of this size or that size . . . ”. P12 acknowledges that
some direct manipulation programs allow one to express precise
measures but it is not as clear and flexible.

Paradoxically, while users feel a sense of precision by being
able to describe position and sizes explicitly, eight participants
complained about the lack of means to check dimensions in the
OpenSCAD view. P19 mentioned “ I had a really tough time tak-
ing measurements and showing measurements visually as part of
the model.” As mentioned, spatial transformation involves several
nested operations and variables, so verification is important. P14
said “ I wrote all these formulas, but did the resulting piece have the
correct size and location?”. To deal with this, participants use echo
operations to print the expression results in a console (P4 “ I could
put some echos to verify those formulas, but It would be much better
measure on the screen.”) or visually inspect parts on the view by
emulating a ruler (P11 “ . . . I put a cube of the right size next to it and
just visually inspect if they are the same height”)

5.2.5 Designing curves and organic shapes. Nine participants said
that, in general, they feel that OpenSCAD is not a friendly appli-
cation for creating nonstructured curves and organic shapes that
are difficult to define using mathematical expressions. For instance,
creating smooth corners was reported as difficult and painfull. Par-
ticipants commented: P4 “ (in OpenSCAD) making rounded edges is
a pain” ; P13 “ It is just easier for the printer to 3D print something
that’s rounded (. . .) But designing it, that is really super hard to do
in OpenSCAD”. Even using prebuilt OpenSCAD functions for this
purpose is hard, such as Minkowski function. P16 and P1 mentioned
“ (the most difficult in OpenSCAD is) figuring out how to do rounded
edges and fillets and chamfers without using Minkowski because it
is too time-consuming to render” and “ . . .making smooth corners
is possible, I use the Minkowski tool but the dimensions changes, it
is inconvenient.”. However, three participants said that when the
shape or curve can be defined mathematically, OpenSCAD is con-
venient for designing it. P10 discussed a project where he defined a

Bézier curve that changed parametrically. Although the mathemat-
ical expression was hard to create, it would work better to have a
parametric design because the curve can be expressed in code.

On the other hand, this task seems significantly easier in B-rep
direct manipulation programs. P6 mentioned “ in Fusion360 if I want
to have a squared box and I want to have a nice rounded corner, I just
can click on both faces and I have a nice rounded edge”. This difference
in difficulty between programming-based and direct manipulation
applications in this seemingly simple task creates frustration for
the participants. P4 expressed “ What makes it hard is that you can
not point to a specific edge or corner and make it round. I don’t like
that”

5.2.6 Dealing with CSG. Some participants (n = 7) mentioned lim-
itations inherent in the CSG representation. First, four participants
said it is hard to verify the result when using the difference and
intersect operations that remove volume. The removed parts are
not visible, and verifying the correctness of the operations seems
problematic. P4 commented “ When you do a subtraction, it is hard
to figure out if you are doing it right, if the subtracted piece is in the
right spot, and if it has the right shape”. One mechanism to deal
with this difficulty is using OpenSCAD modifiers (see section 2.4).
However, modifiers require a trial-and-error approach, which is still
time-consuming. P16 expressed “ (I use modifiers) with the invisible
things, the things I’m subtracting. I’d said it’s an easy way to figure
it out, but it always takes some time”.

Second, three participants expressed frustration that they were
unable to individualize points or faces from the volumes as it is
possible with B-rep. For instance, P4 mentioned it was hard not
to be able to point a corner and round it from the view. A similar
problem occurs when, for instance, the model requires two cubes
to touch in one face. By placing one box at the end of the other,
there is no guarantee that the objects are overlapping. CSG does
not represent faces or vertices information but abstract definitions.
Hence, users can only define two boxes with coincident faces by
correctly defining their positions and sizes. Thus, it seems to be
common practice to add small offsets to ensure overlapping as
mentioned P13 “ You can’t have coincident faces; they have to go past
each other. Every time you put one thing on top of another, you have
to add those overlaps”.

5.2.7 Versioning and collaborative work. Few participants (n = 3)
highly valued the flexibility of code to use repositories such as
GitHub for versioning and collaborative work. Although it is possi-
ble with direct manipulation programs such as FreeCAD, it is not
that convenient, as expressed by P3 “ I especially like how well Open-
SCAD checks in the GitHub repository . . . this is a very collaborative
project, and you can check in Fusion360 in GitHub but it just does not
work. The repository becomes huge very fast. But OpenSCAD is text-
based, making it very well suited to the collaborative environments
we are already using for the source code.”

5.2.8 Specifics of programming-based CAD. We discussed with the
participants the advantages and limitations of programming-based
CAD applications in general and specifically in OpenSCAD.

Working with several files/parts. It is normal to break down the
model into parts when having complex models. In addition to facil-
itating the design process, it is an alternative when the part has to

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

be printed in several parts. This scenario presented some difficulties
for the participants (n = 9). OpenSCAD does not have any option
to define parts in the design, so the participants can export parts
individually. One solution mentioned by the participants was to
create the design and later apply a difference and intersection
with a cube. First, the participant would apply the difference
and remove half of the model to export it to an STL file for print-
ing. Later, the participant would use the same cube and apply an
intersection, removing the second half to export and print. Once
both parts are printed, they will be assembled. The result would
not make parts easy to connect. Therefore, other participants used
some libraries to split the model into parts to better assemble them.

In other cases, applying difference and intersection is not
enough when the model is complex. Thus, participants create a file
for each part. This allows them to isolate each part and focus their
efforts without being distracted by the other parts. Nevertheless,
the process of validating all the parts together is very difficult. For
instance, P5 shared with us a model of a GoPro camera gimbal
with many parts that form an articulated arm. He imported all the
parts into the same project when he wanted to verify how it would
look together. However, when modeling individually, all pieces are
placed in the center. Thus, when importing all parts together, it is
not easy to place them in the correct position and orientation only
to verify the result.

Dealing with code. Eighteen participants discussed issues and
experiences managing code in OpenSCAD. In general, participants
try to keep good coding practices to make their models easy to
understand. They mentioned the importance of commenting on
code, avoiding very long modules, organizing the code, and using
expressive and telling names for variables and modules. However,
they acknowledge that using expressive names for all variables is
impossible. Moreover, using the expressiveness of the language is
not always useful. For instance, P15 explained his model, which
was extensively documented in his mother tongue, Slovakian.

Some participants (n = 7) discussed the challenges they face
when dealing with code. According to them, problems include diffi-
culties in easily finding parts in the code, keeping track of variables
on complex models, and refactoring code. Moreover, we observed
another challenge in the hands-on exercise. When participants were
looking for a code statement of a particular part, they would analyze
and perform tests on the code that was not being evaluated. For
example, elements created inside a conditional structure that was
not evaluated. OpenSCAD does not warn users about this situation,
and they realize this after spending some time analyzing the code.

Some participants (n = 6) stressed that OpenSCAD code editor is
basic and lacks more advanced code editor features, as commented
by P6 “ OpenSCAD really lacks richness in helpers how to write code,
there is no autocompletion and that kind of stuff”.

Code-view navigation. In programming-based CAD, the descrip-
tion of the model (i.e. code editor) is separated from the model
visualization (i.e. viewer). Thus, users must constantly switch be-
tween the code where they edit the model and the view where they
validate the result of the modifications. As a result, navigating the
model and making edits can be difficult [86]. Some participants
opted to use Visual Studio Code (VS Code) [56] instead of using
OpenSCAD code editor. They stated that VS Code allows for the

installation of OpenSCAD plugins that streamline the coding pro-
cess. The participants used VS Code to modify their code files and
accessed a separate window within OpenSCAD to review the out-
put. We observed the behavior of the participants in the hands-on
exercise and discussed with them the challenges related to these
tasks.

We identified a three-step search pattern when looking for code
statements that create specific parts in the view. First, they would
try to identify the block of code where the target part could be de-
fined. Then, they would study the code to confirm the selected code
statement logically. Finally, they would seek a visual confirmation
in the view.

Participants had five strategies for trying to locate the code
statement based on the view: rely on their memory, link the part
to a variable and search the variable, guess how the part should
be created and look for the pattern, follow the comments, and
using OpenSCAD search feature (see section 2.4). As participants
worked with their own models, some participants (n = 12) tried to
remember how the model was built and relate it to their normal
way of structuring the code. For instance, when P7 tried to find
the code statement of a part, they said “ I know how the hex array
(main frame of the model) is organized in the first play, so I would
go here (scrolls the code until finding the hex_array module), ok
here it is”. The second strategy was to link the target part with
the variables and use a text search feature, as P17 commented “
I would assume that it’s related to this variable” before searching
for the occurrences of the variable. This strategy did not work
well when the model repeatedly used the variable the participant
picked to locate the target. The large number of occurrences made
it difficult to study all of them to decide which code statement
was correct. Moreover, OpenSCAD code editor features are basic
and do not provide visual cues to help developers understand the
code (e.g. highlight calls in the scroll bar of a selected variable
or jump to the definition of a selected module by clicking on the
module call). Participants who use VS Code could easily follow the
places in the code where a variable was used. In some occasions,
participants using VS Code made mistakes by editing the code
of a file different from the file OpenSCAD was rendering. They
edited the code and did not see any change in the view until they
realized the problem after some time. The third strategy was to try
to think about how the selected part should have been created in
the code and look for that pattern in the text editor. For example, the
target element for P6 and P2 was a hole, so they started looking for a
difference code statement. In the fourth strategy, when the model
was well documented, participants used comments to understand
the structure of the code and find the correct statement. Finally,
participants could locate the code statement with the OpenSCAD
search feature. Only three participants knew about these features
and mentioned not using them normally. When seeking the code
statement, participants always read the code to understand it and
confirm that it was the target statement.

After the participants thought they had located the target code
statement, they normally sought visual confirmation. The strategies
used to confirm were removing the code statements and verifying
missing objects, changing the parameter values of the code state-
ment and verifying changes in the object’s properties, using a color
operations to highlight the object, and using OpenSCAD modifiers

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

as a debugging task. We could identify some challenges when per-
forming these strategies. Removing code statements can break the
syntax of the code. For example, when a translate statement is
written without opening and closing brackets, the transformation
is applied only to the next code statement. The system will report
an error if the code statement is temporarily removed and the next
statement is not an object (e.g. variable definition). Also, using
color operation does not work if the object is already inside a
color scope. The system will override the statements, prioritizing
the statement placed higher in the tree of operations. Participants
frequently use modifiers for visual inspection but they often forget
the correct syntax and characters to use. Moreover, modifiers do not
work when they are used on 2D elements or code statements that
are not being used (e.g. not evaluated conditional). In any case, all
participants used a trial-and-error technique and required reading
and understanding of the code.

Some participants (n = 8) mentioned some challenges they iden-
tified after the hands-on exercise. They acknowledge that reading
and understanding the code is difficult. It becomes more challeng-
ing in complex models with long scripts, highly decoupled with
several module calls, and with several parameters. They also men-
tioned that finding code based on the view is a repetitive, hard, and
mentally demanding task.

Other programming-based CAD challenges. Eight participants
mentioned some difficulties they identified when designing with
OpenSCAD. We observed that participants are often surprised by
the changes performed on the models because it is impossible to
anticipate the edit’s result confidently. Programming-based appli-
cations do not provide a transition between two states of the code.
Consequently, understanding the impact of the changes made to
the code is not always easy or obvious, as commented by P2 “ One
of the difficulties is that you don’t have immediate feedback when
you change something as a result of the screen; there are always de-
lays.”. Other challenges were related to difficulties in managing text
elements in the view and confusion with OpenSCAD units.

5.2.9 How to improve OpenSCAD. Participants (n = 14) shared
ideas about features that they considered would help their modeling
experience. One key idea was the capability to easily identify parts
of the code based on the view and vice versa. Participants thought
that there could be features to help with this task. In particular,
they would like to have a visual cue that helps them locate the code
based on interactions with the view. P13 commented “ If I could
point at something in OpenSCAD and tell me where this is (in the code
editor), that would be a huge help. Especially if you have complex
geometry, it’s just super hard to figure out just where you are.”.

Participants also commented on how to facilitate the task of
applying spatial transformations. First, they mentioned the need to
be able to measure distances in the view. They also commented that
it would be very convenient to be able to extract spatial coordinates
of objects directly from the view. P14 commented that “ There are
cases where I want to know all those coordinates, but OpenSCAD
doesn’t give that to you. I would like it to tell me what the bounding
boxes of my model are. It doesn’t have to show me on the screen, but at
least when I render it in the output area, it would tell me the bounding
box and the center of mass”. Moreover, seven participants indicated
that they would like the system to assist them in retrieving the

spatial coordinates in terms of the existing variables for parametric
models by interacting with the view. P3 said “ (I would like) if I could
click on this point (in the view) and OpenSCAD would automatically
create an expression using the variables to describe that point (. . .)not
hardcoded numbers because it is not useful anymore that way”. Fur-
ther, in addition to working out the expressions, they would like
the system to allow the creation of constraints directly from the
view. P5 commented “ So being able to simply point at an object to
say, I want to attach this face of this item to that point there and for
it to be able to calculate that distance would be such a timesaver”.

Finally, participants mentioned the need to facilitate some recur-
rent tasks for 3D printing. Specifically, they mentioned that they
would like to have more elaborate libraries to perform usual actions,
such as creating chamfers.

5.2.10 Designing from scratch or re-using models. We discussed
re-using models from websites such as Thingiverse, Printables, or
Github with the participants. Half of the participants (n = 10) ex-
pressed that it is normal to check pre-existing models fromwebsites
before starting to design one from scratch. However, the reasons
for that differ according to several aspects. For instance, P8 said
that he usually starts by searching for models in Google when it
is something complicated. This is probably because P8 has a short
experience with OpenSCAD and 3D printing. Nine participants
mentioned that if they needed to print something very popular,
they would definitely go to check other people’s solutions first. P20
said “ if it’s something that’s really popular that I absolutely know
that there would be models for (. . .) I’ll just go get one rather than
design yet another one”.

Nevertheless, opinions on preferences between re-using models
(and what using them for) or designing from scratch are divided.

Designing from scratch. Six participants prefer to design from
scratch because they have specific needs and look for very cus-
tomized models. P4 commented “ I can design to fit my own setup
. . . for instance, my screwdriver holder, all the holes are a different
size to fit my particular set of screwdrivers so that they fit snug. . . ”.
Other participants (n = 5) expressed their satisfaction in challeng-
ing themselves to build models of good quality on their own, as
mentioned by P11 “ I just like the process of designing and printing
things and be ready to say, I’ve done this by my own.”. Furthermore,
four participants said that starting from scratch is easier, faster, and
has better quality results.

Re-using pre-existing models. We discussed with participants
their thoughts about using pre-existing models. We asked them if
they use them, their motivations, limitations, and the model format
they prefer to look for. Most of the participants (n = 16) reported
that pre-existingmodels do not meet their needs. Evenwhen several
models exist, they usually do not exactly fit participants’ needs. And
even if the model is parametric, available parameters rarely cover
the modification participants want. Moreover, some models are too
complex, with several parameters adding significant complexity to
the printing process, so they are discouraged from using them.In

addition, participants perceive several difficulties with the avail-
able model-storing websites. To start, six participants commented
that searching on these websites is challenging. The naming system
is deficient, so it is difficult to find useful models. Moreover, dealing

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

with licenses can be problematic. Some participants use 3D printing
for commercial applications, so using public models is not ideal for
them. Participants also commented on the Customizer application
from Thingiverse. Although they find it useful, they also mentioned
that it is very limited because authors can only upload models with
one file, without the possibility of making references to other files
or libraries.

However, the participants also acknowledge the potential of such
websites. Six participants mentioned that pre-existing models can
be time savers. They said that for printing popular objects, and for
people with little experience in design, it is a good alternative. Some
participants (n = 8) used pre-existing models as inspiration. These
websites present alternatives for participant’s projects in progress
where they collect ideas. Some of them mentioned being surprised
to see things they never thought possible to do with 3D printing.

Although participants did not use pre-existing models to print
them directly, some have incorporated or edited pre-existing de-
signs for their projects. Fourteen participants commented on diffi-
culties in editing STL files in direct manipulation and programming-
based applications. All of them agreed that finding manifold and
printable geometries is rare. In most cases, they needed to fix bro-
ken geometries before being able to use them, which was reported
to be “ difficult” and “painful”. Participants preferred to have a pre-
existing model with code instead. The offer of models with source
code is more limited and quality varies significantly. Often, available
models are not coded following good practices of programming,
such as adding documentation, so reading and understanding the
code is very hard. Some participants mentioned the importance of
good-quality code if it is meant to be shared as mentioned P5 “ One
thing is designing for yourself, and other designing for sharing” This
is not always the case and depends on the author.

Sharing models. Some participants (n = 8) had profiles on web-
sites such as Thingiverse and Printables, where they shared their
designs. They manifested that they enjoyed sharing their models,
contributing, and seeing other people using and commenting on
their models. Three participants said that although they liked shar-
ing, they did not want to spend more time adjusting their models.
Unfortunately, the models need to be adjusted to share parametric
models in applications like Thingiverse Customizer. For instance,
Customizer only accepts one-file models. P5 commented that he
would like to share more of his models, but he often re-uses his
own libraries that cannot be uploaded to the website. P6, on the
other hand, said that he would like to customize the parameters to
provide a better experience using sliders instead of input boxes, but
would not spend time learning how to do it. Also, some participants
mentioned that websites are not controlled, and they had seen users
taking models from authors and selling them on other websites.

5.3 Fabrication
Some of the questions in the interview were intended to identify
challenges in the fabrication process. We discuss our findings re-
lated to motivations and challenges.

5.3.1 Motivations for 3D printing. Participants use 3D printing for
prototyping, for work, for repairing other objects, and as a hobby.
They discussed what they liked about 3D printing. Five participants
said that they were interested in technology and applications so it

was almost natural for them to try 3D printing. Other participants
mentioned that they have an “ intellectual satisfaction” when they
fabricate complex customizable things successfully. In addition,
seven participants mentioned enjoying the fabrication process and
especially having the physical result.

5.3.2 Design for printing. Three participants mentioned that de-
signing and designing for printing are two different ideas. As ex-
plained by P11 “ Surely you can design everything in CAD, but having
prints with many overhangs or supports is impossible. You need to
design your models with printing in mind”.They also commented
that it is easy to find very complex models that, in practice, are not
printable. When rendering a model in OpenSCAD, users can use a
rapid preview or a more realistic rendering option. P3 commented
that these differences add uncertainty to the design process because
the way both rendering options process the information can lead
the designer to errors.

5.3.3 Printing challenges. Participants (n = 15) discussed different
problems encountered with 3D printing. Very often, they expressed
that tolerances and clearances are factors that introduce high un-
certainty on the success of the printed object. 3D printing does not
precisely reproduce the dimensions and sizes in the digital design.
P10 commented “ I usually have to print multiple times to get the
clearances correct, especially if there are moving parts. It usually takes
several times to get the tolerances right”.

Another challenge is the difficulty of taking into account the
material property in the design process. Different materials have
different behaviors that are difficult to include in the design be-
cause OpenSCAD does not support this information. For instance,
how to design taking into account weak points in the design. P14
commented that“ most difficult in designing for 3D printing is mak-
ing sure you’re accounting for the anisotropic strength properties of
the material . . . anything you print is weaker along layer lines, for
instance”.

Nine participants considered that knowing the printer they use
is a key factor in minimizing uncertainty. They mentioned that
hardware in 3D printing is sensitive to failure and requires good
skills to set up for success, as commented by P19 “ if it’s your own
printer, you have a better sense of what to expect and you have agency
over the state of your machine”.

Other limitations were discussed. When the model is large, there
is less flexibility to iterate due to the amount of material required.
Moreover, participants mentioned that sometimes, putting models
in a correct orientation for better printing is not trivial. Furthermore,
some participants (n = 4) mentioned that printing with supports
can be tedious, so they prefer to avoid it when possible.

5.3.4 Testing. Testing was important to avoid false printings and
waste of material. Participants (n = 4) acknowledge that their only
validation strategy was test prints. P13 and P16 said they would
print layers to verify clearances before printing the entire piece.
Although test prints are time-consuming, they were unable to find
another testing mechanism to anticipate what the result of printing
would look like.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

Table 4: Structure of theme Printing. Color intensity is proportional to the number of interviews coded with codes of the theme
and subthemes.

Theme

What do I like

about it? (n = 10)

Material properties (n = 3)
Printer limitations (n = 9)
Limitations to iterate (n = 1)

Other challenges (n = 8)

What do I use it

for? (n = 8)

Subtheme

Printing

(n = 19)

Motivations for 3D

printing

(n = 16)

It started with a family member or a friend (n = 3)

I like creating customized things (n = 7)

I feel intellectually satisfied with achieving things (n = 3)

I like tech (n = 2)

Hobby (n = 3)

I like to repair things (n = 3)

I use it for work (n = 3)

Prototyping (n = 3)

Design for printing (n = 6)

Iterating the design after printing (n = 2)

Printing challenges

(n = 15)

Clearances introduce uncertainty, making objects fit (n = 6)

Testing (n = 4)

6 DISCUSSION
We are interested in understanding the motivations of
programming-based CAD users. Moreover, we aim to study
their challenges and limitations to discuss opportunities for HCI
research.

6.1 Programming-based CAD users in 3D
printing

Findings in programming-based CAD user preferences (section 5.1)
allowed us to identify two types of motivations when users 3D
print. The utilitarian and the enthusiastic. Users with utilitarian
motivation use 3D printing to solve problems pragmatically. They
are more flexible in design decisions when there are limitations or
a lack of motivation. For instance, participants expressed not liking
re-using pre-existing models, but due to the time limitations, for
example, P19 found pre-existing models a very convenient solution.
He expressed “ As a father with a full-time job, it’s difficult to sit
down and develop a model (. . .) So oftentimes, I’ll look for existing
models, and if they work, I go with them because it’s often easier”.
Similar situations occurred when printing common objects that
participants felt they could find on the Internet.

In contrast, users with enthusiastic motivation invest time and
energy in achieving neat and highly customized objects. Partici-
pants used very creative methods and could iterate several times
to achieve a satisfactory result. P4 shared how a small model for a
screwdriver hole changed over 5 iterations to achieve a satisfactory
result. P14 had experimented with different creative solutions to
capture the outline of curved objects he wanted to repair. When hav-
ing an enthusiastic motivation, users are more likely to design from
scratch rather than use pre-existing STL models with questionable
quality and printability, or coded models that would require time

and effort to understand. Moreover, some participants were moved
by the feeling of pride of “ intellectual satisfaction” when achieving
a result. As commented by P16 “ I like OpenSCAD because it is very
functional, not procedural. That’s an intellectual like . . . functional
languages (like OpenSCAD) are intellectually satisfying for me.”

Furthermore, we identified that the fabrication process involved
stages that users can or cannot enjoy. P7 mentioned that “ (3D
printing) It’s actually three hobbies in one, which is why a lot of
people find it very overwhelming (. . .) There’s the modeling, setting
and improving the 3D printer, and the actual making of the 3D prints”.
Indeed, we could observe different enjoyment from the participants
at the different stages of the process. For instance, P14 described
a project that took him weeks to create a highly customizable
model for pliers. On the other hand, P16 explained a workflow
he developed to create objects with multiple colors on a single-
color printer by playing with the printer settings and the design.
Moreover, P8 said that, although he enjoyed the design process,
what he liked was the result. Consequently, he rushed other parts
despite the errors he could make, such as taking measurements
with care. “ I think like to go to the good part, I want to get to the fun,
having the thing in my hand.” Previous studies [32] reported that
novices were easily frustrated designing objects for 3D printing,
probably because their motivations were to get the objects, not to
design them.

6.2 Programming-based CAD design challenges
The interviews reveal challenges that programming-based CAD
users face (section 5.2), representing a research opportunity for the
HCI community.

Programming-based CAD inputs are coded instructions that the
machine uses to create a visual representation where the user can
verify the result and perform edits in the code if required. Therefore,
the user verifies in one space and edits in another in an intensive

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

and iterative exercise. Consequently, users are forced to understand
the connections between the code and the rendered model, but
current tools barely try to help users in this task.

Navigability. Our hands-on exercise revealed that users use sev-
eral strategies to identify code statements responsible for creating
specific parts based on visual inspection with considerable difficulty.
Most of the participants went through the code to understand it,
and in every case, they needed to make edits to seek visual confir-
mation. Programming-based applications could facilitate this task
by using the implicit connection between the code and the view as
some direct manipulation applications do, connecting the view and
the history tree. Applications such as FreeCAD [80] and Fusion360
[34] allow users to click on specific parts on the view while the cor-
responding element in the history tree is highlighted. OpenSCAD
provides a backward search (section 2.4) to place a cursor on a code
statement based on a selected part in the view. However, it does
not provide visual cues to confirm that the selected part is aimed,
and users need to modify the code to seek visual confirmation.
IceSL [49] provides better visual cues to highlight code statements
responsible for creating parts in the view but does not discriminate
between statements involved, so it is impossible to navigate the
CSG structure. Gonzalez et al. [27] propose a navigation system that
helps isolate specific parts with the corresponding code statements
with visual cues in OpenSCAD. Such systems facilitate the under-
standing of the structure of the code and how it is related to the
view without the need to study or modify the code. However, this
interaction technique has limitations related to ambiguity when
selecting parts that are visually the same but different in code. For
instance, a cube is modified by a translate or scale statement.
The visual response is the same when selecting any of these two
statements, although each performs different tasks. A navigation
system could differentiate these cases, adding visual cues to un-
derstand the nature of the statement. In the previous example, the
preview could show an animation of the cube being created and
moved or scaled, with the transformation statement indicating the
dynamic effect of the code.

Understanding spatial coordinate systems in the code. Understand-
ing 3D spaces on a 2D screen is a difficult task reported in direct
manipulation [32]. Our interview revealed that this problem can be
more difficult in programming-based CAD where the editing space
is disconnected from the view, and there is no visual help to relate
them. In other words, users have to mentally imagine the behavior
in the view that a spatial transformation will have when stated
in code. Moreover, CSG structures create nested scopes where the
coordinate system is relative to the aggregated effect of spatial
transformations performed previously. Participants mentioned the
need for trial and error strategies to apply a spatial transformation
successfully. The task becomes more complex when using rotations,
which are generally more difficult to understand. Some participants
tried to avoid nested transformations due to difficulty understand-
ing them. To alleviate these challenges, programming-based CAD
applications could incorporate features to enhance users’ compre-
hension of spatial properties during coding. For instance, some di-
rect manipulation applications integrate "manipulators" [36], such
as row-shaped widgets positioned at the center of objects, indi-
cating the relative ’x’, ’y’, and ’z’ axes, as seen in Unity [81]. In

programing-based CAD, Gonzalez et al. [27] system allows the user
to select a specific part and places these manipulators in the center
of the relative coordinate system of a selected object to visualize it.
This helps to understand the relative system coordinate in the view,
but it does not connect it to the meaning in the code. The correspon-
dence between both spaces can be more explicit through visual cues.
For instance, axis widgets have different colors to distinguish the
translation axis, which the code editor could use in the space of the
transformation parameters to make this correspondence explicit.
Moreover, by clicking on the widgets, the application could open
a text dialog to edit the corresponding parameter directly in the
view, as is possible in some direct manipulation applications [34].

Defining geometric properties based on pre-existing information.
In CAD design, the geometric properties of an object are closely
related to those of other objects. For example, users may want
to place a cube on top of another. Direct manipulation applica-
tions facilitate user interaction through visual aids such as rulers
and volume highlighting during overlap, the use of snap effects
that guide positioning during drag-and-drop actions, or the use
of constraints [23, 34]. These applications facilitate the re-use of
additional information from the model within the model. However,
programming-based CAD makes this task more challenging. Appli-
cations such as OpenSCAD or JSCAD often limit interactions within
the view, preventing users from selecting specific parts or re-using
information, for example, the position of an object. Applications
could use visual elements as rulers that allow for measurement
or even retrieve raw positions, orientations, or sizes from objects
directly from the view when clicking on parts of the model’s visual
representation. Implementing bidirectional programming [55] be-
haviors could support this task as has been done in SVG [28] and
CAD previous work [27, 40].

In general, programming-based CAD could benefit from allow-
ing a more enriched interaction in the derived information ren-
dered in the view while coherently connecting it with the code and
supporting the edit based on this information. Moving towards bidi-
rectional programming [28] or live programming [85] paradigms
could bridge the gap existing between both spaces, code and view,
which is one significant difficulty in programming [60].

6.3 3D printing challenges.
The interviews revealed problems in the process related to the
disconnection between the CAD model and the target environment
as described in section 5.3.

Fit between the design object and other physical objects. Users
cannot consider contextual limitations, resulting in longer processes
and creativity limitations [76]. P9 explained that the lack of context
resulted in more iterations fabricating a case for an emergency
button. Bridging the digital design and the physical environment
can facilitate the design process. One approach is incorporating
digital references of the physical environment into the digital design.
Some participants upload STL replicas of objects into OpenSCAD
and FreeCAD to have a reference of the object and design around
it. Websites such as Thingiverse [83] or MyMiniFactory [58] offer
models, mostly in STL format, that users can use as references when
designing, although participants and previous work have reported

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

some problems with the search engines and meshes quality [18, 50].
Another possibility is to bring the model into the environment.
DesignAR [66], for instance, allows designers to work in augmented
reality environments and place models in physical environments
using direct manipulation. Programming-based CAD applications
could explore having virtual or augmented reality previews for a
realistic preview of objects. Moreover, these environments could
also facilitate code interaction and understanding, as previously
explored in other fields [31, 41, 68, 69]. Furthermore, expanding
interaction in programming-based CAD can leverage bidirectional
programming [27, 28, 55].

Include physical measurements. Capturing data from physical ob-
jects has been also reported as challenging [43, 53, 65]. Participants
reported difficulties in measuring curved and organic shapes using
programming-based CAD. Research could explore sensing devices
to capture and transfer information to CAD applications. Some par-
ticipants use photogrammetry and scanners to capture the outline
of curves and reproduce them digitally, but these solutions were
found to be time-consuming, complex, and imprecise. Additionally,
retrieved information as a point cloud is difficult to parameterize.
An alternative solution is to use Bezier curves, where a few control
points mathematically define a contour. Solutions like ShArc [70]
can capture data from these control points with less effort, creating
a suitable solution to replicate organic shapes parametrically. The
use of augmented reality could also help to capture control points
to create Bezier curves.

Other challenges in 3D printing. Users go through different dis-
connected stages when 3D printing. CAD applications often limit
functionalities to the design, ignoring limitations concerning the
printing process. For example, participants used to apply spatial
transformations to their models to locate them in an optimal po-
sition and orientation for 3D printing. However, if any edit was
required, they removed these transformations to see the model in a
more familiar position and orientation. Similarly, when participants
needed to split a model into parts. They first finish the model and
then apply a difference and intersection with conditionals to
save two different STL files.

CAD application could facilitate the design by including infor-
mation related to the printing process. For example, the same model
would not print the same on different printers or with different
materials. One of the main factors of uncertainty expressed by the
participants was the tolerances and clearances. After printing and
detecting problems, they would have to go to the CADmodel, adjust
it, export it, and print it again. CAD software could inform users
of possible problems related to the design complexity (e.g. need
for supports), printer tolerances, printer capabilities (e.g. possible
angles of printing), or materials properties when printing.

7 LIMITATIONS
The hands-on exercise was a short observation task rather than a
controlled user study. Findings related to it may be limited, missing
other challenges that users face in the design process. Moreover,
having experience in direct manipulation programs was not an
exclusion criterion. Consequently, some of the participants had

no previous experience in such software, and their answers re-
lated to these applications were not based on a reasonable expe-
rience and understanding of the direct manipulation paradigm.
Finally, our interview only included OpenSCAD users. Although
most programming-based CAD applications also use a CSG repre-
sentation, each tool provides different features, and not all of our
findings may be generalizable. Further, a few programming-based
tools that use B-rep representation, such as CadQuery, may provide
a different user experience and challenges than the ones reported
in our findings.

8 CONCLUSION
We interviewed twenty users of the most popular programming-
based CAD tool, OpenSCAD, to investigate their motivations and
challenges in the design of 3D objects and the 3D printing pro-
cess. During these interviews, we included hands-on experience
to observe behaviors and difficulties when navigating the model.
With the information collected, we performed a reflexive thematic
analysis in an iterative process, developing main themes related
to the user’s profile, design experience, and printing experience.
Our findings reveal that users are motivated to use programming-
based CAD tools thanks to their parametric capability, the possi-
bility of using mathematical expressions, and the precision for 3D
printing. Moreover, it reveals several challenges in connecting the
code with the view, understanding and performing spatial trans-
formations, measuring and designing organic and curve shapes,
validating dimensions in the view, and re-using pre-existing models.
Programming-based CAD could facilitate some of these tasks by
enabling the information that the system stores and effectively com-
municating it to the user. Last, our findings also reveal difficulties
in the 3D printing process, such as handling uncertainty introduced
by printers and material properties, identifying code locations to
perform correction based on physical inspection, and validation
before printing.

REFERENCES
[1] Robert Aish. 2012. DesignScript: Origins, Explanation, Illustration. In Compu-

tational Design Modelling, Christoph Gengnagel, Axel Kilian, Norbert Palz, and
Fabian Scheurer (Eds.). Springer, Berlin, Heidelberg, 1–8. https://doi.org/10.1007/
978-3-642-23435-4_1

[2] Celena Alcock, Nathaniel Hudson, and Parmit K. Chilana. 2016. Barriers to
Using, Customizing, and Printing 3D Designs on Thingiverse. In Proceedings
of the 19th International Conference on Supporting Group Work (GROUP ’16).
Association for Computing Machinery, New York, NY, USA, 195–199. https:
//doi.org/10.1145/2957276.2957301

[3] Amabilis. 2022. Amabilis Software. http://amabilis.com/
[4] D. C. Anderson and T. C. Chang. 1990. Geometric reasoning in feature-based

design and process planning. Computers & Graphics 14, 2 (Jan. 1990), 225–235.
https://doi.org/10.1016/0097-8493(90)90034-U

[5] Prusa Research a.s. 2023. Base de datos de modelos 3D. https://www.printables.
com

[6] Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie. 2016. Towards Augmented
Fabrication: Combining Fabricated and Existing Objects. In Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’16). Association for Computing Machinery, New York, NY, USA, 1510–1518.
https://doi.org/10.1145/2851581.2892509

[7] Autodesk. 2020. Tinkercad | Create 3D digital designs with online CAD. https:
//www.tinkercad.com/

[8] Giles Bathgate. 2023. RapCAD. https://gilesbathgate.com/category/rapcad/
[9] Srinjita Bhaduri, Quentin L Biddy, Jeffrey Bush, Abhijit Suresh, and Tamara

Sumner. 2021. 3DnST: A Framework Towards Understanding Children’s In-
teraction with Tinkercad and Enhancing Spatial Thinking Skills. In Proceed-
ings of the 20th Annual ACM Interaction Design and Children Conference (IDC

https://doi.org/10.1007/978-3-642-23435-4_1
https://doi.org/10.1007/978-3-642-23435-4_1
https://doi.org/10.1145/2957276.2957301
https://doi.org/10.1145/2957276.2957301
http://amabilis.com/
https://doi.org/10.1016/0097-8493(90)90034-U
https://www.printables.com
https://www.printables.com
https://doi.org/10.1145/2851581.2892509
https://www.tinkercad.com/
https://www.tinkercad.com/
https://gilesbathgate.com/category/rapcad/

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

’21). Association for Computing Machinery, New York, NY, USA, 257–267.
https://doi.org/10.1145/3459990.3460717

[10] Richard E. Boyatzis. 1998. Transforming qualitative information: Thematic analysis
and code development. Sage Publications, Inc, Thousand Oaks, CA, US. Pages:
xvi, 184.

[11] Virginia Braun and Victoria Clarke. 2013. Successful qualitative research: a practi-
cal guide for beginners. SAGE, Los Angeles. OCLC: ocn811733656.

[12] Virginia Braun and Victoria Clarke. 2021. Can I use TA? Should I use
TA? Should I not use TA? Comparing reflexive thematic analysis and other
pattern-based qualitative analytic approaches. Counselling and Psychother-
apy Research 21, 1 (2021), 37–47. https://doi.org/10.1002/capr.12360 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/capr.12360.

[13] Virginia Braun, Victoria Clarke, and V Hayfield. 2019. Answers to frequently
asked questions about thematic analysis April 2019.pdf. https://cdn.auckland.ac.
nz/assets/psych/about/our-research/documents/Answers%20to%20frequently%
20asked%20questions%20about%20thematic%20analysis%20April%202019.pdf

[14] Mark Brunelli. 2022. Parametric vs. Direct Modeling: Which Side Are You
On? https://www.ptc.com/en/blogs/cad/parametric-vs-direct-modeling-which-
side-are-you-on?

[15] David Byrne. 2022. A worked example of Braun and Clarke’s approach to
reflexive thematic analysis. Quality & Quantity 56, 3 (June 2022), 1391–1412.
https://doi.org/10.1007/s11135-021-01182-y

[16] CadQuery. 2023. CadQuery. https://github.com/CadQuery/cadquery original-
date: 2018-10-28T17:57:18Z.

[17] DEVCOM Analysis Center. 2023. BRL-CAD: Open Source Solid Modeling. https:
//brlcad.org/

[18] Erik Champion and Hafizur Rahaman. 2020. Survey of 3D digital heritage
repositories and platforms. Virtual Archaeology Review 11, 23 (July 2020), 1–
15. https://doi.org/10.4995/var.2020.13226 Number: 23.

[19] Christos Chytas, Ira Diethelm, and Alexandros Tsilingiris. 2018. Learning pro-
gramming through design: An analysis of parametric design projects in digital
fabrication labs and an online makerspace. In 2018 IEEE Global Engineering Edu-
cation Conference (EDUCON). 1978–1987. https://doi.org/10.1109/EDUCON.2018.
8363478 ISSN: 2165-9567.

[20] Scott Davidson. 2023. Grasshopper. https://www.grasshopper3d.com/
[21] James D. Foley, Foley Dan Van, Andries Van Dam, Steven K. Feiner, and John F.

Hughes. 1996. Computer Graphics: Principles and Practice. Addison-Wesley
Professional.

[22] Blender Foundation. 2023. blender.org - Home of the Blender project - Free and
Open 3D Creation Software. https://www.blender.org/

[23] FreeCAD. 2023. Python scripting tutorial - FreeCAD Documentation. https:
//wiki.freecad.org/Python_scripting_tutorial/en

[24] David Frohlich. 1997. Direct Manipulation and Other Lessons. Handbook of
Human-Computer Interaction (2nd Ed.) (Dec. 1997). https://doi.org/10.1016/B978-
044481862-1.50087-X

[25] Ian Gibson, David Rosen, and Brent Stucker. 2015. Additive manufacturing tech-
nologies: 3D printing, rapid prototyping and direct digital manufacturing (second
edition ed.). Springer, New York Heidelberg Dodrecht London.

[26] VERBI GmbH. 2023. Software de Análisis de Datos Cualitativos - MAXQDA.
https://www.maxqda.com

[27] Johann Felipe Gonzalez, Danny Kieken, Thomas Pietrzak, Audrey Girouard, and
Géry Casiez. 2023. Introducing Bidirectional Programming in Constructive Solid
Geometry-Based CAD. In Proceedings of the 2023 ACM Symposium on Spatial User
Interaction (SUI ’23). Association for Computing Machinery, Sydney, Australia,
1–12. https://doi.org/10.1145/3607822.3614521

[28] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/
3332165.3347925

[29] Monique M. Hennink, Bonnie N. Kaiser, and Vincent C. Marconi. 2017. Code
Saturation Versus Meaning Saturation: How Many Interviews Are Enough?
Qualitative Health Research 27, 4 (March 2017), 591–608. https://doi.org/10.1177/
1049732316665344 Publisher: SAGE Publications Inc.

[30] Christoph M. Hoffmann. 1989. Geometric and solid modeling: an introduction.
Morgan Kaufmann, San Mateo, Calif.

[31] Akihiro Hori, Masumi Kawakami, and Makoto Ichii. 2019. CodeHouse: VR
Code Visualization Tool. In 2019 Working Conference on Software Visualization
(VISSOFT). 83–87. https://doi.org/10.1109/VISSOFT.2019.00018

[32] Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016. Understanding
Newcomers to 3D Printing: Motivations, Workflows, and Barriers of Casual
Makers. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). Association for Computing Machinery, New York, NY, USA,
384–396. https://doi.org/10.1145/2858036.2858266

[33] Gina Häußge. 2023. OctoPrint.org. https://octoprint.org/
[34] Autodesk Inc. 2023. Fusion 360 | 3D CAD, CAM, CAE, & PCB Cloud-Based

Software | Autodesk. https://www.autodesk.com/products/fusion-360/overview
[35] BlocksCAD Inc. 2023. BlocksCAD. https://www.blockscad3d.com/

[36] J. Jankowski andM. Hachet. 2015. Advances in Interaction with 3D Environments.
Computer Graphics Forum 34, 1 (2015), 152–190. https://doi.org/10.1111/cgf.12466

[37] Chris Johnson. 2023. Computational Making with Twoville. Journal of Computing
Sciences in Colleges 38, 8 (2023), 39–53.

[38] Petra Kastl, Oliver Krisch, and Ralf Romeike. 2017. 3D Printing as Medium for
Motivation and Creativity in Computer Science Lessons. In Informatics in Schools:
Focus on Learning Programming (Lecture Notes in Computer Science), Valentina
Dagienė and Arto Hellas (Eds.). Springer International Publishing, Cham, 27–36.
https://doi.org/10.1007/978-3-319-71483-7_3

[39] Matt Keeter. 2022. libfive. https://libfive.com/
[40] Matthew Keeter. 2023. Antimony. https://www.mattkeeter.com/projects/

antimony/3/
[41] Pooya Khaloo, Mehran Maghoumi, Eugene Taranta, David Bettner, and Joseph

Laviola. 2017. Code Park: A New 3D Code Visualization Tool. In 2017 IEEE
Working Conference on Software Visualization (VISSOFT). 43–53. https://doi.org/
10.1109/VISSOFT.2017.10

[42] Hyun Suk Kim, Heedong Ko, and Kunwoo Lee. 1993. Incremental feature-based
modeling. In Proceedings on the second ACM symposium on Solid modeling and
applications (SMA ’93). Association for Computing Machinery, New York, NY,
USA, 469–470. https://doi.org/10.1145/164360.164525

[43] Jeeeun Kim, Anhong Guo, Tom Yeh, Scott E. Hudson, and Jennifer Mankoff. 2017.
Understanding Uncertainty in Measurement and Accommodating its Impact in
3D Modeling and Printing. In Proceedings of the 2017 Conference on Designing
Interactive Systems (DIS ’17). Association for Computing Machinery, New York,
NY, USA, 1067–1078. https://doi.org/10.1145/3064663.3064690

[44] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. Rome, Italy, 199–206. https://doi.org/10.1109/VLHCC.
2004.47

[45] Siniša Kolarić, Halil Erhan, Robert Woodbury, and Bernhard E. Riecke. 2010.
Comprehending parametric CAD models: an evaluation of two graphical user
interfaces. Nordic Conference on Human-Computer Interaction (Oct. 2010), 707–
710. https://doi.org/10.1145/1868914.1869010 MAG ID: 2002429313 S2ID:
ead43517e8402c84be0e4aec844a3316cefd12f2.

[46] Stacey Kuznetsov and Eric Paulos. 2010. Rise of the expert amateur: DIY
projects, communities, and cultures. In Proceedings of the 6th Nordic Confer-
ence on Human-Computer Interaction: Extending Boundaries (NordiCHI ’10). As-
sociation for Computing Machinery, New York, NY, USA, 295–304. https:
//doi.org/10.1145/1868914.1868950

[47] Bum chul Kwon, Waqas Javed, Niklas Elmqvist, and Ji Soo Yi. 2011. Direct ma-
nipulation through surrogate objects. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’11). Association for Computing Ma-
chinery, New York, NY, USA, 627–636. https://doi.org/10.1145/1978942.1979033

[48] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159–174. https:
//doi.org/10.2307/2529310 Publisher: [Wiley, International Biometric Society].

[49] Sylvain Lefebvre, Salim Perchy, Cédric Zanni, and Pierre Bedell. 2022. IceSL.
https://icesl.loria.fr/

[50] Chen Liang, Anhong Guo, and Jeeeun Kim. 2022. CustomizAR: Facilitating
Interactive Exploration and Measurement of Adaptive 3D Designs. In Designing
Interactive Systems Conference (DIS ’22). Association for Computing Machinery,
New York, NY, USA, 898–912. https://doi.org/10.1145/3532106.3533561

[51] Julia Longtin. 2023. ImplicitCad.org. https://www.implicitcad.org/
[52] Felipe Machado, Norberto Malpica, and Susana Borromeo. 2019. Parametric

CAD modeling for open source scientific hardware: Comparing OpenSCAD
and FreeCAD Python scripts. PLOS ONE 14, 12 (May 2019), e0225795. https:
//doi.org/10.1371/journal.pone.0225795 Publisher: Public Library of Science.

[53] Chandan Mahapatra, Jonas Kjeldmand Jensen, Michael McQuaid, and Daniel
Ashbrook. 2019. Barriers to End-User Designers of Augmented Fabrication. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, Glasgow Scotland Uk, 1–15. https://doi.org/10.1145/3290605.3300613

[54] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (Nov. 2019), 72:1–72:23. https://doi.org/10.1145/3359174

[55] Michael J. McGuffin and Christopher P. Fuhrman. 2020. Categories and Com-
pleteness of Visual Programming and Direct Manipulation. In Proceedings of
the International Conference on Advanced Visual Interfaces (AVI ’20). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
3399715.3399821

[56] Microsoft. 2023. Visual Studio Code - Code Editing. Redefined. https://code.
visualstudio.com/

[57] Catarina Mota. 2011. The rise of personal fabrication. In Proceedings of the
8th ACM conference on Creativity and cognition (C&C ’11). Association for
Computing Machinery, New York, NY, USA, 279–288. https://doi.org/10.1145/
2069618.2069665

[58] MyMiniFactory. 2022. MyMiniFactory | Discover STL files for 3D printing ideas
and high-quality 3D printer models. https://www.myminifactory.com/

https://doi.org/10.1145/3459990.3460717
https://doi.org/10.1002/capr.12360
https://cdn.auckland.ac.nz/assets/psych/about/our-research/documents/Answers%20to%20frequently%20asked%20questions%20about%20thematic%20analysis%20April%202019.pdf
https://cdn.auckland.ac.nz/assets/psych/about/our-research/documents/Answers%20to%20frequently%20asked%20questions%20about%20thematic%20analysis%20April%202019.pdf
https://cdn.auckland.ac.nz/assets/psych/about/our-research/documents/Answers%20to%20frequently%20asked%20questions%20about%20thematic%20analysis%20April%202019.pdf
https://www.ptc.com/en/blogs/cad/parametric-vs-direct-modeling-which-side-are-you-on?
https://www.ptc.com/en/blogs/cad/parametric-vs-direct-modeling-which-side-are-you-on?
https://doi.org/10.1007/s11135-021-01182-y
https://github.com/CadQuery/cadquery
https://brlcad.org/
https://brlcad.org/
https://doi.org/10.4995/var.2020.13226
https://doi.org/10.1109/EDUCON.2018.8363478
https://doi.org/10.1109/EDUCON.2018.8363478
https://www.grasshopper3d.com/
https://www.blender.org/
https://wiki.freecad.org/Python_scripting_tutorial/en
https://wiki.freecad.org/Python_scripting_tutorial/en
https://doi.org/10.1016/B978-044481862-1.50087-X
https://doi.org/10.1016/B978-044481862-1.50087-X
https://www.maxqda.com
https://doi.org/10.1145/3607822.3614521
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1177/1049732316665344
https://doi.org/10.1177/1049732316665344
https://doi.org/10.1109/VISSOFT.2019.00018
https://doi.org/10.1145/2858036.2858266
https://octoprint.org/
https://www.autodesk.com/products/fusion-360/overview
https://www.blockscad3d.com/
https://doi.org/10.1111/cgf.12466
https://doi.org/10.1007/978-3-319-71483-7_3
https://libfive.com/
https://www.mattkeeter.com/projects/antimony/3/
https://www.mattkeeter.com/projects/antimony/3/
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1145/164360.164525
https://doi.org/10.1145/3064663.3064690
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/1868914.1869010
https://doi.org/10.1145/1868914.1868950
https://doi.org/10.1145/1868914.1868950
https://doi.org/10.1145/1978942.1979033
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://icesl.loria.fr/
https://doi.org/10.1145/3532106.3533561
https://www.implicitcad.org/
https://doi.org/10.1371/journal.pone.0225795
https://doi.org/10.1371/journal.pone.0225795
https://doi.org/10.1145/3290605.3300613
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3399715.3399821
https://doi.org/10.1145/3399715.3399821
https://code.visualstudio.com/
https://code.visualstudio.com/
https://doi.org/10.1145/2069618.2069665
https://doi.org/10.1145/2069618.2069665
https://www.myminifactory.com/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

[59] Yuenyong Nilsiam and Joshua M. Pearce. 2017. Free and Open Source 3-D Model
Customizer for Websites to Democratize Design with OpenSCAD. Designs 1, 1
(Sept. 2017), 5. https://doi.org/10.3390/designs1010005 Number: 1 Publisher:
Multidisciplinary Digital Publishing Institute.

[60] Donald Norman. 1986. Cognitive Engineering. In User Centered System Design:
New Perspectives on Human-Computer Interaction. 31–61. https://doi.org/10.1201/
b15703-3 Journal Abbreviation: User Centered System Design: New Perspectives
on Human-Computer Interaction.

[61] Lora Oehlberg, Wesley Willett, and Wendy E. Mackay. 2015. Patterns of Physical
Design Remixing in OnlineMaker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (CHI ’15). Association
for Computing Machinery, New York, NY, USA, 639–648. https://doi.org/10.
1145/2702123.2702175

[62] Library of Congress. 2019. STL (STereoLithography) File Format Family. https:
//www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml

[63] OpenJSCAD.org. 2023. JSCAD - JavaScript CAD. https://openjscad.xyz/
[64] OpenSCAD. 2020. OpenSCAD. http://openscad.org
[65] Raf Ramakers, Danny Leen, Jeeeun Kim, Kris Luyten, Steven Houben, and Tom

Veuskens. 2023. Measurement Patterns: User-Oriented Strategies for Dealing with
Measurements and Dimensions in Making Processes. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI ’23). Association
for Computing Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/
3544548.3581157

[66] Patrick Reipschläger and Raimund Dachselt. 2019. DesignAR: Immersive 3D-
Modeling CombiningAugmented Reality with Interactive Displays. In Proceedings
of the 2019 ACM International Conference on Interactive Surfaces and Spaces (ISS
’19). Association for Computing Machinery, New York, NY, USA, 29–41. https:
//doi.org/10.1145/3343055.3359718

[67] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (June 2003), 137–172. https://doi.org/10.1076/csed.13.2.137.14200 Publisher:
Routledge.

[68] Markus Schütz and Michael Wimmer. 2019. Live Coding of a VR Render Engine
in VR. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
1150–1151. https://doi.org/10.1109/VR.2019.8797760 ISSN: 2642-5254.

[69] Víctor Stefano Segura Castillo, Leonel Merino, Geoffrey Hecht, and Alexandre
Bergel. 2021. VR-Based User Interactions to Exploit Infinite Space in Programming
Activities. In 2021 40th International Conference of the Chilean Computer Science
Society (SCCC). 1–5. https://doi.org/10.1109/SCCC54552.2021.9650396 ISSN:
2691-0632.

[70] Fereshteh Shahmiri and Paul H. Dietz. 2020. ShArc: A Geometric Technique for
Multi-Bend / Shape Sensing. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376269

[71] Irv Shapiro. 2023. MakeWithTech Blog. https://www.makewithtech.com/
[72] Samyukta Sherugar and Raluca Budiu. 2016. Direct Manipulation: Definition.

https://www.nngroup.com/articles/direct-manipulation/
[73] Ben Shneiderman. 1982. The future of interactive systems and the emergence of

direct manipulation. Behaviour & Information Technology 1, 3 (July 1982), 237–256.
https://doi.org/10.1080/01449298208914450 Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/01449298208914450.

[74] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming
Languages. Computer 16, 8 (1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471 Conference Name: Computer.

[75] Ben Shneiderman. 1997. Direct manipulation for comprehensible, predictable
and controllable user interfaces. In Proceedings of the 2nd international conference
on Intelligent user interfaces (IUI ’97). Association for Computing Machinery, New
York, NY, USA, 33–39. https://doi.org/10.1145/238218.238281

[76] Ben Shneiderman, Gerhard Fischer, Mary Czerwinski, Mitch Resnick, Brad Myers,
Linda Candy, Ernest Edmonds, Mike Eisenberg, Elisa Giaccardi, Tom Hewett,
Pamela Jennings, Bill Kules, Kumiyo Nakakoji, Jay Nunamaker, Randy Pausch,
Ted Selker, Elisabeth Sylvan, and Michael Terry. 2006. Creativity Support Tools:
Report From a U.S. National Science Foundation Sponsored Workshop. In-
ternational Journal of Human–Computer Interaction 20, 2 (May 2006), 61–77.
https://doi.org/10.1207/s15327590ijhc2002_1 Publisher: Taylor & Francis.

[77] Brendan M. Sleight. 2023. lasercut.scad. https://github.com/bmsleight/lasercut
original-date: 2015-08-26T20:13:41Z.

[78] Joanna Smith and Jill Firth. 2011. Qualitative data analysis: the framework
approach. Nurse Researcher 18, 2 (Jan. 2011), 52–62. https://doi.org/10.7748/
nr2011.01.18.2.52.c8284

[79] David Stutz. 2018. A Formal Definition of Watertight Meshes • David Stutz.
https://davidstutz.de/a-formal-definition-of-watertight-meshes/

[80] The FreeCAD Team. 2022. FreeCAD: Your own 3D parametric modeler. https:
//www.freecadweb.org/

[81] Unity Technologies. 2023. Unity. https://unity.com/
[82] Thingiverse.com. 2022. Customizer by MakerBot on Thingiverse - Thingiverse.

https://www.thingiverse.com/app:22

[83] Thingiverse.com. 2022. Thingiverse - Digital Designs for Physical Objects. https:
//www.thingiverse.com/

[84] Hannah Twigg-Smith, Jasper Tran O’Leary, and Nadya Peek. 2021. Tools, Tricks,
and Hacks: Exploring Novel Digital Fabrication Workflows on #PlotterTwitter. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3411764.3445653

[85] Bret Victor. 2013. Bret Victor - The Future of Programming. https://vimeo.com/
71278954

[86] Tom Yeh and Jeeeun Kim. 2018. CraftML: 3D Modeling is Web Programming. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–12. https://doi.org/10.1145/3173574.3174101

[87] Qiang Zou. 2022. Parametric/direct CAD integration. https://doi.org/10.48550/
arXiv.2203.02252 arXiv:2203.02252 [cs].

APPENDIX
Base questionnaire used in the semi-structured interviews.

(1) Are you at least an Advanced Beginner with OpenSCAD?
(Are you capable of creating designs and understanding the
code of a model?)

(2) What is your gender?
(3) How old are you?
(4) What is your academic background?
(5) What is your current job?
(6) Do you have experience with 3D printing?
(7) If yes, tell me about your experience with 3D printing. When

did you start? What were your motivations?
(8) How often do you 3D print?
• Daily
• Weekly
• Monthly
• Every two months
• Every semester
• Less often

Here, we define the terms of direct manipulation and
programming-based paradigms that we use in the rest of the inter-
view.

(9) What direct manipulation CAD applications have you
used before, and what is your experience in each? Name of
the application and skill level

• 1 - Novice
• 2 - Advanced Beginner
• 3 - Competent
• 4 – Proficient
• 5 - Expert

(10) Other than CAD, what other programming languages, in
general, have you used, and what is your skill level in each
one? Programming language name and skill level

• 1 - Novice
• 2 - Advanced Beginner
• 3 - Competent
• 4 – Proficient
• 5 - Expert

(11) What is your skill level in OpenSCAD ?
• 1 - Novice
• 2 - Advanced Beginner
• 3 - Competent
• 4 – Proficient

https://doi.org/10.3390/designs1010005
https://doi.org/10.1201/b15703-3
https://doi.org/10.1201/b15703-3
https://doi.org/10.1145/2702123.2702175
https://doi.org/10.1145/2702123.2702175
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://openjscad.xyz/
http://openscad.org
https://doi.org/10.1145/3544548.3581157
https://doi.org/10.1145/3544548.3581157
https://doi.org/10.1145/3343055.3359718
https://doi.org/10.1145/3343055.3359718
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1109/VR.2019.8797760
https://doi.org/10.1109/SCCC54552.2021.9650396
https://doi.org/10.1145/3313831.3376269
https://www.makewithtech.com/
https://www.nngroup.com/articles/direct-manipulation/
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/238218.238281
https://doi.org/10.1207/s15327590ijhc2002_1
https://github.com/bmsleight/lasercut
https://doi.org/10.7748/nr2011.01.18.2.52.c8284
https://doi.org/10.7748/nr2011.01.18.2.52.c8284
https://davidstutz.de/a-formal-definition-of-watertight-meshes/
https://www.freecadweb.org/
https://www.freecadweb.org/
https://unity.com/
https://www.thingiverse.com/app:22
https://www.thingiverse.com/
https://www.thingiverse.com/
https://doi.org/10.1145/3411764.3445653
https://vimeo.com/71278954
https://vimeo.com/71278954
https://doi.org/10.1145/3173574.3174101
https://doi.org/10.48550/arXiv.2203.02252
https://doi.org/10.48550/arXiv.2203.02252

Understanding the Challenges of OpenSCAD Users for 3D Printing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

• 5 - Expert
(12) What motivated you to learn/use OpenSCAD specifically?

How did you start? Did you try other applications? Why
OpenSCAD and no others?

(13) Let’s talk about the last three objects you 3D printed. De-
scribe the object and motivation.

(14) Would you say that, in general, you 3D print for the motiva-
tions mentioned before, or are there other main reasons you
print for?

(15) How did you get the design for those objects? Design them
from scratch, Pre-existing models

(16) How do you normally get your models? Design them from
scratch, Pre-existing models

(17) What CAD applications did you use to design/edit your last
three objects and why?

(18) What were the major difficulties you found in the process
of fabricating these objects (Including all the processes,
ideation, design, configuration, printing, iteration, etc)?
What is the most time-consuming part? What brings more
uncertainty? (What makes you iterate more?)

(19) In general, what are the most difficult parts of the fabrica-
tion process (including all the processes, ideation, design,
configuration, printing, iteration, etc)? What is the most
time-consuming part?What brings more uncertainty? (What
makes you iterate more?)

(20) What factors bring more uncertainty or usually make you
iterate more times?

(21) Specifically in the model design part, what is the most diffi-
cult and time-consuming part? Is it something related to the
software? Is it different when you use direct manipulation
than programming-based?

(22) If different than the previous answer, Specifically in Open-
SCAD, what is the most difficult and time-consuming part?

(23) Do you need to measure physical sizes to transfer them
into the digital design? How do you do it? What tools and
strategies do you use? How do you verify the correctness of
the measurements?

(24) Tell me about measurement difficulties, Linear measure-
ments, Curved and organic shape measurements

(25) Generally, when you 3D print, how often do you design the
models you print from scratch? Why?

• (0%) Never
• (1% - 20%) Rarely
• (20% - 40%) Often
• (40% - 60%) Sometimes
• (60% - 80%) Frequently
• (80% - 99%) Very frequently
• (100%) Always

(26) Generally, when you 3D print, how often do you use a pre-
existing model for the models you print (previous projects,
friend’s model, website model)? Why?

• (0%) Never
• (1% - 20%) Rarely
• (20% - 40%) Often
• (40% - 60%) Sometimes
• (60% - 80%) Frequently

• (80% - 99%) Very frequently
• (100%) Always

(27) What motivates you to design from scratch or to use a pre-
existing model?

(28) Do you know model-storing websites such as Thingiverse?
What others?

(29) If yes, what do you think about them? Do you use them? Do
you find them useful?

(30) If you know Thingiverse, have you used the Customizer tool?
Talk to me about your experience with this tool.

(31) When you use pre-existing models, in what format do you
get them? (stl, obj, code...)

(32) When you re-use a non-coded pre-existing model, how
often do you need to edit it? What types of modifications do
you make?

• (0%) Never
• (1% - 20%) Rarely
• (20% - 40%) Often
• (40% - 60%) Sometimes
• (60% - 80%) Frequently
• (80% - 99%) Very frequently
• (100%) Always

(33) When you re-use a non-coded pre-existing model, how
difficult is it to edit it? Explain what applications you use
and why the level of difficulty you selected.

• 1- Very easy
• 2- Easy
• 3- Neutral
• 4- Difficult
• 5- Very difficult

(34) When you re-use a coded pre-existing model, how often
do you need to edit it? What types of modifications do you
make?

• (0%) Never
• (1% - 20%) Rarely
• (20% - 40%) Often
• (40% - 60%) Sometimes
• (60% - 80%) Frequently
• (80% - 99%) Very frequently
• (100%) Always

(35) When you re-use a coded pre-existing model, how difficult
is it to edit it? Explain what applications you use and why
the level of difficulty you selected.

• 1- Very easy
• 2- Easy
• 3- Neutral
• 4- Difficult
• 5- Very difficult

(36) Did you bring some of your previous OpenSCAD projects?
Talk to me about one of them, How was the process, how
many iterations did you need, andwhat was themost difficult
part of the process?

(37) (Hands-on exercise) I will ask you to localize in the code
the specific statements that create a part that I will point
out in the view. Share aloud the thinking process you follow

CHI ’24, May 11–16, 2024, Honolulu, HI, USA J. Felipe Gonzalez, et al.

to find it. Is this a task you normally do when designing:
looking for a specific part in the code based on the view?
What is the hardest part of doing it? What strategies do you
use normally?

(38) How difficult was the task?
(39) In OpenSCAD (and programming-based), how easily can

you link the output in the view to the code?
(40) What would you say is the best of OpenSCAD and the worst?

What would you say is the best of programming-based CAD
and the worst?

(41) What are the advantages and disadvantages of direct manipu-
lation and programming-based applications like OpenSCAD?
When do you prefer to use one or the other?

	Abstract
	1 Introduction
	2 Background
	2.1 Programming-based CAD
	2.2 Parametric and direct modeling
	2.3 Data representation
	2.4 OpenSCAD

	3 Related work
	3.1 Modeling with direct manipulation programs
	3.2 Modeling with programming-based CAD
	3.3 Sharing and re-using models.

	4 Method
	4.1 Recruitment and Participants
	4.2 Data Analysis

	5 Themes
	5.1 Programming-based CAD users profile
	5.2 Design
	5.3 Fabrication

	6 Discussion
	6.1 Programming-based CAD users in 3D printing
	6.2 Programming-based CAD design challenges
	6.3 3D printing challenges.

	7 Limitations
	8 Conclusion
	References

